

## **Product Development Plan for a mRNA Dengue Vaccine**

**Mohammad Mainul Ahasan** 



# **Incepta Pharmaceuticals Ltd**



## **Global Dengue Burden**

- First isolated in 1943, increasing concern with rapid urbanization
- At present, endemic in more than 100 countries
- 100-400 million infections/year with 96 million clinical manifestation
- Almost half of world's population at risk
- Asia represents 70% of global disease burden









## Dengue in Bangladesh

- Geographical location, weather, population density contributing together high number of cases
- First outbreak reported in 2000, resulted 5551 cases including 93 deaths
- Mostly limited to capital Dhaka and very few metropolitan cities
- In 2023, distributed all over the country



## **Current Dengue status in Bangladesh**

- Dengue is costing tremendous disease
   burden each year
- In last 24 hours, 263901 hospitalization and 11 deaths
- Three main reason of high disease burden
  - ✓ No available vaccine
  - ✓ No available therapeutics for seriously ill hospitalized patients
  - ✓ No effective vector control strategy







## **Bangladesh: Dengue Hotspot and Global Warning!**

- In 2023, Bangladesh (170 million population) has
   2.6 times higher cases than neighboring country
   India (1.4 billion population)
- Among South-East Asia, Bangladesh is experiencing maximum dengue cases and deaths this year
- In the week of 36, US reported maximum number of dengue cases (78), while Bangladesh reported 2575
- Without vaccine research and trials, this situation can bring catastrophic disaster globally

| Region/Country                    | Cases      | Deaths   |  |
|-----------------------------------|------------|----------|--|
| USA                               | 1,289.00   | -        |  |
| Europe (Italy,<br>France & Spain) | 74.00      | -        |  |
| India                             | 94,198.00  | 91.00    |  |
| Bangladesh                        | 247,032.00 | 1,206.00 |  |





- For more than 75 years, scientists and product developers have attempted to design and advance safe and efficacious vaccine candidates.
- Challenges have been substantial and formidable
  - ✓ Existence of four DENV types (1–4), each capable of causing infection
  - ✓ No validated immune correlate of protection
  - ✓ Animal models do not comprehensively recapitulate the human dengue infection experience
  - ✓ Immunologic assays are unable to precisely define DENV type-specific immune responses
  - ✓ Requirement for very large efficacy trials to demonstrate benefit across diverse populations and clinical endpoints





| Nameª       | Year <sup>b</sup> | Valence <sup>c</sup> | Vaccine formulation                                                                                                                         | Developer/manufacturer                                                                   | Evaluation                                                   | Adjuvanted |
|-------------|-------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------|
| Dengvaxia   | 2015              | Tetravalent          | Chimeric viruses YFV/DEN 1-4                                                                                                                | Sanofi Pasteur                                                                           | Licensed                                                     | No         |
| TV003/TV005 | 2003              | Tetravalent          | Three genetically attenuated viruses and one chimeric virus                                                                                 | NIAID <sup>d</sup> and Butantan <sup>e</sup>                                             | In vivo (phase IIIB)                                         | No         |
| TAK-003     | 2006              | Tetravalent          | Chimeric viruses DEN-2 PDK-53,<br>DEN -1,-3, or -4                                                                                          | Takeda                                                                                   | In vivo (phase II) To be<br>licensed in Indonesia<br>in 2023 | No         |
| TDEN        | 2017              | Tetravalent          | Viruses attenuated with passages in PDK cells                                                                                               | WRAIR <sup>f</sup> and GlaxosmithKline                                                   | In vivo (phase I-II)                                         | No         |
| DPIV        | 2012              | Tetravalent          | Purified inactivated viruses (DEN 1–4), Aluminium hydroxide AS01,<br>AS03 or AS04 adjuvants                                                 | WRAIR, GllaxosmithKline and<br>FIOcruz <sup>g</sup>                                      | In vivo (phase I)                                            | Yes        |
| TVDV        | 2018              | Tetravalent          | DNA vaccine based on prM and E<br>protein coding sequences cloned in<br>VR1012 plasmid and co-administered<br>with VAXFECTIN as an adjuvant | U.S. AMRDC <sup>h</sup> , WRAIR, NMRC<br>and Vical                                       | <i>In vivo</i> (animal and phase I)                          | Yes        |
| V180        | 2018              | Tetravalent          | Recombinant proteins based on prM<br>and 80% of E protein of DEN 1–4<br>combined with different adjuvants                                   | Merck and Co.                                                                            | In vivo (phase I)                                            | Yes        |
| DSV4        | 2018              | Tetravalent          | Virus like particles expressing EDIII<br>of DEN 1–4                                                                                         | International Centre for Genetic<br>Engineering and Biotechnology                        | <i>In vivo</i> (animal)                                      | No         |
| E80-mRNA    | 2020              | Tetravalent          | mRNA expressing human IgE and E80<br>protein packaged into LNP                                                                              | CAS laboratory of Molecular<br>Virology and Immunology,<br>Institute Pasteur of Shanghai | <i>In vivo</i> (animal)                                      | No         |

#### Platforms

- ✓ Live attenuated
- ✓ Inactivated
- ✓ Protein subunit
- ✓ DNA
- ✓ mRNA

Only live attenuated virus vaccines have achieved licensure or reached advanced clinical development





PMID: 36857199

#### Denvaxia

- ✓ First licensed vaccine; 20 countries
- ✓ **Poor protection** in children under age of 9 years
- ✓ Lower protection against **DENV1 & 2**; predominant Ab response against **DENV4**

#### TAK-003

- ✓ Licensed in Indonesia this year to be used in people 4 years of age and older regardless of **baseline** dengue immune status
- ✓ No protection in seronegative recipients against all dengue and hospitalized dengue due to **DENV3**
- ✓ No conclusive data for **DENV4** due to low event numbers during trial

#### LATV TV003/TV005

- ✓ Initiated Phase 3 study in 2016 with 16,000 volunteers in Brazil
- ✓ Efficacy data is only available for **DENV1** (89.5%) and **DENV2** (69.6%) due to the low circulation of types **DENV3** and **4** during the trial

A more effective vaccine that can generate heterotypic nAb against all four DENV serotypes is still needed





 Recent advances have updated the mRNA vaccine development of many flaviviruses









- Partnership with Prof. Drew Weissman Lab at University of Pennsylvania
- New R&D lab dedicated for mRNA by Q1 2024
- mRNA GMP production facility in design phase
- Capability to produce raw materials for mRNA production

  ✓ T7 RNA polymerase

  ✓ dNTPs

  - ✓ Cap analog





### **DENV mRNA vaccine development timetable**



Project goals & schedule is stablished



Immunogens selection & design

Bioinformatics

Experiment design

Project kickoff



Vector generation

Vector production



mRNA vaccine production

mRNA production Expression & QC

assessment



mRNA vaccine encapsulation

Encapsulation in lipid nanoparticles (LNPs)



Pre-clinical studies

Mice & monkey immunization

DENV challenge



Data acquisition and analysis

Ab (Total & nAb)

& T cell responses

ADE assessment

Phase I

Phase II

Phase III

Phase IN











## **DENV mRNA vaccine project team**

Project leader: Xiomara Mercado-López, Ph.D., MPH

Research technicians:

Wendy Bonilla-Acosta, M.S.

Valeria Bornacelli, M.S.









## **Vaccine Research and Trial Opportunities**

- Bangladesh had hosted world largest measlesrubella vaccination campaign
- High vaccine acceptance rate among common people. Ranked among top 15 countries for COVID-19 vaccination
- Vaccine research and manufacturing facility at disposal (e.g. Incepta Pharmaceutical Ltd.)
- Globally recognized CRO for trials (e.g. icddr'b)









## Acknowledgements

- University of Pennsylvania
  - Prof. Drew Weissman
  - Dr. Xiomara Mercado-López



- Imperial College London
  - Prof. Robin Shattock















# THANK YOU THANK YOU THANK YOU

40, Shaheed Tajuddin Sarani, Tejgaon Industrial Area Dhaka 1208, Bangladesh

www.inceptavaccine.com

+88 02 8891688-703

