

Epidemiology of Hand, Foot and Mouth Disease in South-East Asia &

Key Immunological Considerations for Vaccine Development

Yoke Fun Chan

Hand, Foot and Mouth Disease (HFMD)

General

- Highly contagious
- Common in young children
- Group of enterovirusescoxsackievirus A viruses, enterovirus A71, echoviruses
- Pathogenesis
 - faecal-oral, direct
 - replicate in oropharynx
 - viraemia and dissemination to target organs (CNS, skin)
 - excreted in pharynx and faeces for weeks

Symptoms

- Fever, sore throat, mouth ulcers
- Herpangina vs HFMD
- Blisters on palms of hands and soles of feet
- Symptoms usually appear 3 to 5 days after exposure
- Recurrent HFMD-0.45%⁴
- 1. Rev Med Virol 2019, 29: e2073.
- 2. eBiomedicine 2020, 62: 103078.
- 3. Eur J Paediatr Neurol 2018, 22:763-773.
- 4. Emerg Infect Dis. 2018, 24: 432-442.

Complications

- Rare neurological complications
- Aseptic meningitis, brain stem encephalitis with neurogenic edema
- In infants and young children (mean age < 2 years old)
- More commonly
 associated with EV-A71
 (0.1-1.1% severe; 0.01 0.03% fatal)^{1, 2}
- Long-term neurological sequelae³

Enteroviruses

Epidemiology & Immunological Considerations

Disease burden of HFMD

Known target population

Lessons from polio and current EV-A71 vaccines

Neutralizing antibody correlate of protection

Durability of immune protection

Immunogenicity requires complete capsid & is species specific

Disease Burden of HFMD

Table 2 Annual disability-adjusted life—year (DALY) losses in eight Asian countries/regions with 95% credible intervals (CI)

Country or region	DALY	95% CI
People's Republic of China (excluding Hong Kong and Taiwan)	75 881	(31 835 to 202 591)
Hong Kong special administrative region, People's Republic of China	285	(115 to 767)
Japan	5456	(2290 to 14 589)
Malaysia	2723	(1138 to 7281)
Singapore	259	(104 to 748)
Taiwan, Republic of China	1084	(435 to 3052)
Thailand	3928	(1644 to 10 536)
Vietnam	7248	(3042 to 19 414)

 96 900 (95% CI 40 600 - 259 000) ageweighted DALYs per annum

BMJ Global Health 2018;3:e000442.

Vietnam (2016-2017):

- Total of 94,313 hospitalized HFMD cases
- HFMD economic burden- US\$90,761,749

China: HFMD morbidity cases remained at approximately 2 million

Int. J. Mol. Sci. 2023, 24:169.

Malaysia: Second most common infectious disease

HFMD affects young children

EV-A71 Vaccines- Good Neutralizing Antibodies & Durable Immune Protection

Organizations	Cell Line	Strain	Dosage (mg)	Population Target In trial	Remarks
Sinovac Biotech Co., Ltd (China)	Vero cell	C4a (H07 strain)	1	6–35 months old	94.8% efficacy Approved Dec 2015
Beijing Vigoo Biological Co., Ltd. (China)	Vero cell	C4a (FY7VP5 strain)	0.8	6–35 months old	97% efficacy Approved Dec 2016
CAMS (China)	KMB- 17 cell	C4a (FY- 23 K-B strain)	0.25	6–71 months old	94.7% efficacy Approved Dec 2015
NHRI (Taiwan)	Vero cell	B4	5 and 10	20–43 years adults	-
Enimmune Co. (Taiwan)	Vero cell	B4	0.25, 0.5, 1, 2 and 5	6 month –6 years old	-
Medigen Vaccine Biologics Co. (Taiwan)	Vero cell	B4	150	2 month - 6 years old	96.8% efficacy Approved 2023
Inviragen (Singapore)	Vero cell	B4	0.6 and 3	Adults	Terminated

Vaccine 2020, 38: 1-9.

Immune Responses (EV-A71)

nnate

- Cytokine storm associated with IL-1 beta, IL-6, IL-10, IL-17A, MCP-1, IL-8 MIG, IP-10, G-CSF
- activated by non-structural viral proteins¹

Rev Med Virol 2019, 29: e2073.

- 1. Int. J. Mol. Sci. 2023, 24: 169.
- 2. Human Vaccine and Therapeutics 2022, 18: e2073751.
- 3 Lancet Reg Health West Pac 2021, 16: 100284.
- 4. Expert Rev Vaccines. 2017,16:945-949.
- 5. J Immunol 2013, 191: 1637-1647.

umoral

- Maternal antibodies decline by 6 months
- IgM-detectable 3- 6 days after onset, **cross-reactive**
- 1:16-1:32 neutralizing antibody as immunological surrogate endpoint for EV71 vaccine protection²
- Seropositivity and seroconversion after two vaccine doses were ~100% ³,>IU 36.2 IU/ml⁴
- IVIG for treatment
- dominant linear epitopes in mice and human are different
- antibody-dependent enhancement only *in vitro* model

Cellular

- disease
 progression and
 clinical outcome
- Th1 & proinflammatory cytokines in blood
- Cross-reactive epitopes⁵

EV-A71 Antigenicity, Immunogenicity & Immune Protection

- **DE loop- EV-A71 IgM**-specific immunodominant epitope
- Epitopes against non-structural proteins were also detected
- Antisera from **rabbits** injected with formalin-inactivated EV-A71 only recognized VP2-28 peptide (**aa 136–150 VP2**)
- Mouse antisera only recognized VP1-43 (aa 211–225 VP1= SP70)

EV-A71 Antigenicity, Immunogenicity & Immune Protection

- species-specific dominant epitopes
- careful interpretation of animal studies

Viruses. 2021, 13: 720.

Emerg Infect Dis 2016, 22:1562-1569 Vaccine 2009, 27: 3153-3158

PLoS Negl Trop Dis 2014, 8: e3044

Epidemiology & Immunological Considerations

Disease burden of other enteroviruses

Antigenic diversity,
Multiple serotypes
and genotypes

Virulence & Recombination

Multivalent candidates

Immune Interference

HFMD in Asia- Presence of Multiple Enteroviruses-The Need for Multivalent HFMD Vaccine

Characteristics of HFMD in Mainland China: Before and After Vaccine

	2013-2015 (Before)	2017-2019 (After)	Change (%)
Incidence rates *	2800.78	2575.29	-8.05
Severe illness rates *	18.97	7.17	-62.20
Mortality rates *	0.37	0.06	-83.78
Severe /Cases (%)	0.68	0.28	-58.82
Death/Cases (%)	0.01	0.00	-100.00
Death/Severe Cases (%)	1.97	0.85	-56.85

Circulation of Other enteroviruses-UK

Circulation of Other Enteroviruses-USA

Do we need to add other vaccine candidates?

Monitoring virulence & recombination in EV-A71

- Severe HFMD
 Vietnam- C4¹, less
 severe Malaysia- B4²
- Virulence in SCARB2transgenic mice clade B5 (I, II), C4 (II-IV)³
- Virulent mutations
 VP1 145, 244⁴
- Recombination alters fitness and virulence⁵
- 1. Eurosurveillance 2018, 23: 1800590
- 2. Clinical Infectious Diseases 2007; 44: 646-656
- 3. J Virol 2021, 95: e0151521
- 4. PLoS Pathogens 2019, 15: e1007863
- 5. Emerg Microbes Infect 2021, 10: 713-724.

Learn from Multivalent HFMD Vaccines

TYPES

CHARACTERISTICS

Inactivated

Live-attenuated

Subunit- peptide, VP1 etc

Virus-like particles

Bivalent/
Trivalent/
Tetravalent/
Hexavalent

HFMD disease burden: EV-A71, CV-A6, CV-A10, CV-A16 HFMD and other enteroviruses: CV-B, Echo

Innate and cellular responses- non-structural viral proteins

Cross protectionconserved regions

Balance Immune interference

Int. J. Mol. Sci. 2023, 24: 169.

Therapeutic Advances in Vaccines and Immunotherapy 2019;7. Hum Vaccin Immunother 2015, 11:2688-704 Vaccines 2014, 32: 6177-6182.

Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination (Immune interference?)

Infection with EV-A71 or CV-A16 serotype provide transient immunity against each other

Vaccination- Serotype replacement by CV-A16 transient, big reduction in the burden of EV-A71-associated HFMD

A mass EV-A71 vaccination program of infants and young children will reduce HFMD burden.

Possible asymmetry in its strength such that CV-A16 serves as a stronger forcing on EV-A71.

Summary: Epidemiology & Immunological Considerations

STRENGTHS

Disease burden of HFMD

Known target population

Lessons from polio and current EV-A71 vaccines

Neutralizing antibody correlate of protection

Durability of mmune protection

Immunogenicity requires complete capsid & is species specific

FUTURE IMPROVEMENTS

Disease burden of other enteroviruses

Antigenic diversity,
Multiple serotypes
and genotypes

Virulence & Recombination

Multivalent

Immune Interference