Intellectual Property analysis in South-East Asia Amina Larbi - MPP, Head of patent Information November 1st, 2023 - Regional meeting in South-East Asia, Bangkok, Thailand ## IP landscape strategy ### Phase 1: COVID-19 vaccines (mRNA-based included) VaxPaL, MPP's patent database devoted to COVID-19 vaccines created in June 2021 and released as a searchable DB in Dec 2021. - Comprises patent information on 13 approved or late-stage COVID-19 vaccines - Includes 3 vaccines based on mRNA technology: Moderna's Elasomeran/mRNA-1273, Pfizer/BioNtech's Tozinameran/BNT162b2, and CureVAC 's Zorecimeran/CVnCoV-(not approved). - Includes patents on underlying technologies. - Patent status worldwide. - Regularly updated. - Open access: https://www.vaxpal.org/ ## Phase 2: Patent landscape on 1st generation COVID-19 mRNA vaccine - (Moderna look-alike) - Critical patents for the vaccine manufacturing technology identified. - Information on patents linked to the vaccine technology under development at Afrigen with status in LMICs monitored and updated. - xls file available for download | TYPE | | Publication No. | | Subject Matter | Pa | tent Status LMICs | | Pa | tent Status HICs | | |-----------------|---------|-----------------|------------|---|---------------------------------|--|--|--|---|---| | _ | ssignee | | | | Granted | Pending - | Withdrawn
• | Granted ▼ | Pending - | Withdrawn
▼ | | LNPS(&MR
NA) | Moderna | WO2015164674 | 23/04/2035 | Nucleic acid
compositions | RU2746406C2 (WO claims granted) | BR, CN, IN (opposed), EP
divisionals filed (AL, BG,
MK, RS, TR, BA, ME,
MA) | | JP, US, EP3134131 (granted, claims restricted to influenza virus), | | | | LNPS(&MR
NA) | Moderna | WO2020061457 | 20/09/2039 | Method of producing a
lipid nanoparticle (LNP)
encapsulating a nucleic
acid which used in the
preparation of mRNA-
1273 vaccine. | | CN, EP (AL, BG, MK, RS, TR) | EP (BA, ME, KH,
MA, MD, TN) | | CA, EP (AT, BE, CH,
CY, CZ, DE, DK, EE, ES,
FI, FR, GB, GR, HR,
HU, IE, IS, IT, LI, LT,
LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI,
SK, SM), JP, US | | | SARS(&MR
NA) | Moderna | WO2021154763 | 26/01/2041 | mRNA comprising an open
reading frame (ORF) that
encodes a SARS-CoV-2
spike (S) protein having a
double proline stabilizing
mutation | | CO, DO, MX, PE, PH, TH | EP (AL, MK, RS,
RT, BA, ME, KH,
MA, MD, TN), AR,
BR, CN, RU, EA,
ZA2022/08639
App withdrawn
end 2022-early
2023 | | AE, TW, NZ | AU, CA, EP, IL, KR, SA national filing US17/000,215 allowed in Aug 2021, abandoned by failure to pay final fees due to on-going discussions with NIH (dispute over inventorship). Claims restricted to a specific mRNA sequence (assumed to cover mRNA- 1273) | ## Phase 2: 1st generation mRNA technology (Moderna look-alike) - Landscaping main findings - Due to existing patents, freedom to operate (FTO) in ZA, CN, BR, RS likely more challenging than other LMICs. - For newer applications, FTO will depend on claims finally granted in each country. - Deep patent landscape evaluation to be performed to support network partners in making their own FTO for COVID-19, especially if based in countries not included in the Moderna waiver (i.e. BR, AR, RS, ZA), and in relation to other third-party patents - Monitor newly published applications and on-going litigations ### **VaxPaL** – elasomeran in South-East Asian countries | Jurisdiction | Product Name(s) | Vaccine
Type | Originator(s) | Patent Description | Patent
Status | Patent
Application
Date | Patent Application
Number | Expected
Expiry Date | |--------------|---------------------------------------|-----------------|---------------|---|--------------------|-------------------------------|------------------------------|-------------------------| | India | Elasomeran
(mRNA-1273) 0.5 | RNA based | Moderna | Lipid nano-particle composition | Withdrawn | 15/04/2009 | IN4265/KOLNP/2010 | | | | ml | | | Method of expressing a polypeptide by administering an isolated mRNA | Withdrawn | 03/10/2012 | IN2839/DELNP/2014 | | | | | | | Method of producing a polypeptide in a mammalian cell or tissue with a formulation comprising a modified mRNA encoding the polypeptide; Pharmaceutical compositions comprising modified mRNA formulated in LNPs | Withdrawn | 27/05/2014 | IN4286/DELNP/2014 | | | | | | | Nucleic vaccine compositions | Filed
(opposed) | 23/04/2015 | IN201617039870 | 23/04/2035 | | | | | | Method for delivering a nucleic acid to a primate (Human) by administering a lipid nanoparticle with specific mean particle diameter comprising nucleic acid encapsulated within the LNP, cationic lipid, neutral lipid, steroid and polymer-conjugated lipid | Filed | 14/08/2020 | IN202217012332 | 14/08/2040 | | Indonesi | e Elasomeran
(mRNA-1273) 0.5
ml | RNA based | Moderna | Method for delivering a nucleic acid to a primate (Human) by administering a lipid nanoparticle with specific mean particle diameter comprising nucleic acid encapsulated within the LNP, cationic lipid, neutral lipid, steroid and polymer-conjugated lipid | Filed | 14/08/2020 | IDP00202203121 | 14/08/2040 | | Sri Lanka | Elasomeran
(mRNA-1273) 0.5
ml | RNA based | Moderna | Method for delivering a nucleic acid to a primate (Human) by administering a lipid nanoparticle with specific mean particle diameter comprising nucleic acid encapsulated within the LNP, cationic lipid, neutral lipid, steroid and polymer-conjugated lipid | Filed | 14/08/2020 | LK22167 | 14/08/2040 | | Thailand | Elasomeran
(mRNA-1273) 0.5
ml | RNA based | Moderna | Method for delivering a nucleic acid to a primate (Human) by administering a lipid nanoparticle with specific mean particle diameter comprising nucleic acid encapsulated within the LNP, cationic lipid, neutral lipid, steroid and polymer-conjugated lipid | Filed | 14/08/2020 | TH2201000939 | 14/08/2040 | | | | | | mRNA comprising an open reading frame (ORF) that encodes a SARS-CoV-2 spike (S) protein having a double proline stabilizing mutation | Filed | 26/01/2021 | TH2201004674 | 26/01/2041 | - One pending application in India from Moderna. - A recent filing from Acuitas to be monitored to understand if relevant or not ## VaxPaL - elasomeran in countries of the Western Pacific Region Search for Vietnam, Philippines, Malaysia and Thailand: only the recent filing by Acuitas in Malaysia and Viet Nam ## Phase 3: 2nd Generation mRNA technology – **Monitoring of newly published patent applications** - IP landscape strategy redefined to be aligned with the 2nd generation mRNA technology strategy discussions - IP search strategy was broadened in scope to account for: - o Formulation based on lipid nanoparticles (especially when including cationic lipids). - Modified mRNA (at nucleotide, capping, terminal, construct level) for improved expression. - o mRNA vaccines specific for high/medium priority infections (beyond COVID-19) - Monitoring initiated in June 2022 and .xls file available for <u>download</u> with 1088 records - 300 additional patent publications retrieved since June 2023 are being reviewed. | Back to | Introduction | | | mR | NA Vaccines | | | mRNA
Therapeutics | | | | |------------|---------------------|------------------|------------------------|------------|----------------|----------------|--------------------|----------------------|----------------------------------|---|--------------------------| | Updat
e | Number | RNA/DNA | Lipid
Nanoparticles | | Analysis/Devic | | Target(s) | | Title | Abstract | Applicants
(NORMALIZE | | | (Patentsc | ▼ | ▼. | Vehicle: 🚽 | es 🔻 | ▼ | ▼ | ▼ | _▼ | ▼ | | | | | | ' | | | | | | | for the preparation, | | | Jun-22 | WO2013174409 | | Polymers | | | | | | REVERSIBLE IMMOBILIZATION AND/OR | The present invention | CUREVAC | | | | | | | | | | | CONTROLLED RELEASE OF NUCLEIC | relates to nanoparticles | | | | | | | | | | | | ACID CONTAINING NANOPARTICLES | comprising nucleic acids | | | Jun-22 | WO2013182683 | | (Main) | | | Route of | Multiple targets | | PULMONARY DELIVERY OF | Anatod with a | ETHRIS GMBH | | Odirez | W-02010102000 | | (I-Idill) | | | administration | relatiple targets | | MESSENGER RNA | method for expressing an | ETTII IIO GII IIDIT | | | | | | | | administration | | | THE SOCIOLITY IN | mRNA in lung wherein - the | | | | | | | | | | | | | mRAIA.to.bo.everossed.is | | | Jun-22 | WO2013185069 | | (Main) | | | Route of | | | PULMONARY DELIVERY OF MRNA TO | | ETHRIS GMBH; SH | | | | | | | | administration | | | NON-LUNG TARGET CELLS | mRNA fonnulated for | HUMAN GENETIC | | | | | | | | | | | | pulmonary administration | THERAPIES | | lun 22 | WO2014005958 | Self-amplifying/ | | | | | Retroviridae (HIV) | | IMMUNOGENIC COMPOSITIONS AND | and related methods for
This invention generally | NOVARTIS | | our-22 | <u>WUZUI4003336</u> | replicating | | | | | metrovilidae (miv) | | USES THEREOF | relates to immunogenic | NOVANTIO | | | | replicating | | | | | | | ODED INENEOF | compositions that | | | | | | | | | | | | | compositions that | | ## Monitoring – Dengue (10 results) #### Players Geo scope | Back to Ir | troduction | | | mBNA | Yaccines | | | mRNA
Therapeu | | | | |------------|--|---------|------------------------|-------------------------------|-----------------|---|---------------------------------------|------------------|--|---|---| | Update | Pub. Number
(Patentscope
link) = | RNA/DNA | Lipid
Nanoparticles | Other
Delivery
Yehiole: | Analysis/Devic | _ | Target(s) | Therapeu | Title | Applicants
(NORMALIZED) | Related patent documents
(Patentscope accessed
on 27.06.2023 Espacen | | Jun-22 | W□2013059493 | RNA/DNA | | | | | Flaviviridae <i>l</i>
Dengue virus | | DENGUE VIRUS E-GLYCOPROTEIN
POLYPEPTIDES CONTAINING MUTATIONS
THAT ELIMINATE IMMUNODOMINANT
CROSS-REACTIVE EPITOPES | US DEPARTMENT
OF HEALTH AND
HUMAN
SERVICES;
TRUSTEES OF | DA2852684; EP2768847;
US20140286983; AU2012326079;
EP3269728; EP3819306;
N3739/DELNP/2014;
US20160375123; US20180353593; | | Jun-22 | WO2014150939 | BNA/DNA | | | | | Flaviviridae <i>l</i>
Dengue virus | | COMPOSITIONS AND METHODS FOR
DENGUE VIRUS CHIMERIC CONSTRUCTS IN
VACCINES | US DEPARTMENT
OF HEALTH AND
HUMAN
SERVICES;
TRUSTEES OF | CA3166063; CA3177572;
CA3166063; CA3177572;
CA3177574; SG10201802192V;
SG10201913387X;
SG10201913435T; CA2903231;
SG11201507460P; EP2968516; | | Jun-22 | WO2020014658 | mBNA | | | | | Flaviviridae/
Dengue virus | | BROADLY REACTIVE IMMUNOGENS OF
DENGUE VIRUS, COMPOSITIONS, AND
METHODS OF USE THEREOF | UNIV. GEORGIA
RES. | JS20220001001 | | May-23 | WO2011138586 | RNA/DNA | | | | | Flaviviridaeł
Dengue virus | | DENGUE YIRUS VACCINE | IMPERIAL
INNOVATIONS
NATIONAL
CENTER FOR | - | | May-23 | WO2014016362 | RNA/DNA | | | | | Flaviviridae/ | \Rightarrow | VACCINE COMPOSITIONS FOR
PREVENTION AGAINST DENGUE VIRUS | SANOFIPASTEUR | KR1020157003822;
SG11201500439R; EP2877207; | | May-23 | WO2014074912 | RNA/DNA | | | | | Flaviviridae <i>l</i>
Dengue virus | | COMPOSITIONS, METHODS AND USES FOR
DENGUE VIRUS SEROTYPE-4 CONSTRUCTS | VACCINES
US DEPARTMENT | EP2916864; UY0001035131;
AR093421; JP2016501015;
VZ630839 | | May-23 | WO2014083194 | RNA/DNA | | | | | Flaviviridae/ | \Rightarrow | METHODS FOR INDUCING ANTIBODIES | OE.WEALTW.8SANOFI PASTEUR | BR112015012515 | | May-23 | WO2014144786 | RNA/DNA | | | | | Flaviviridae <i>l</i>
Dengue virus | | NOVEL VACCINES AGAINST MULTIPLE
SUBTYPES OF DENGUE VIRUS | UNIV
PENNSYLVANIA;
INOVIO
PHARMACEUTICA | CN110055265; CA2906082;
EP2968394; US20160022802;
KR1020160004267;
AU2014228497; CN105246491; | | May-23 | <u>₩02015019253</u> | RNA/DNA | | | | | Flaviviridae/
Dengue virus | | ANTI-DENGUE VIRUS GENETIC VACCINE
BASED ON THE ENVELOPE PROTEIN
ECTODOMAINS | INTERNATIONAL
CENTER FOR
GENETIC ENGINE | - | | May-23 | WO2017023839 | RNA/DNA | | | | | Flaviviridae/
Dengue virus | | IMMUNE ENHANCING RECOMBINANT
DENGUE PROTEIN | US NAVY
US ARMY | EP3331559 | ## Monitoring – Dengue – Sanofi | Pub. Number
(Patentscope link) | Abstract | Application
Date | Related patent documents
(Patentscope accessed on 27.06.2023
Espacenet on 28.06.2023) | | | | |-----------------------------------|---|---------------------|--|--|--|--| | WO2014016362 | The present invention relates to vaccine compositions that are useful in a method of | 24/07/2013 | KR1020157003822; SG11201500439R;
EP2877207; US20150265695; | | | | | | protecting a human subject against dengue disease. | | AU2013295016; ID2017/01302; MYPI;
2014003521; PH1/2014/502875;
VN42584; BR112015001313; TH172458;
JP2015524422; PE2015-0356;
CA2878599; MXMX/a/2015/000446;
CO7390785; IN988/CHENP/2015 | | | | | WO2014083194 | The present invention provides agents for use in methods of inducing neutralising antibodies against the four serotypes of dengue virus, wherein said agents are administered in conjunction with a measles vaccine, a mumps vaccine and a rubella vaccine. | 29/11/2013 | BR112015012515 | | | | - Equivalent patents filed in East Asia & Pacific in: Indonesia, Malaysia, Philippines, Vietnam, Thailand and India - Expected expiry in 2033: 20 years from filing date 24/07/2013 - Status and scope of claims/patent to be checked monitored (e.g. refused in Vietnam) ## Monitoring – Malaria (6 results) | Pub. Number
(Patentscope link) | RNA/DN
A | Administration | Target(s) | Title | Applicants
(NORMALIZED) | Application
Date | Related patent documents
(Patentscope accessed on 27.06.2023 Espacenet on | |-----------------------------------|-------------|-----------------------------------|-----------|---|--|---------------------|--| | - | ₹ | ▼ | Ţ | - | - | - | 28.06.2023) | | WO2019140136 | mRNA | | Malaria | MALARIAL VACCINATION
METHODS AND REGIMENS | UNIV WASHINGTON | 10/01/2019 | US20200338178; IN202047034174 | | WO2020128031 | mRNA | | Malaria | RNA FOR MALARIA
VACCINES | CUREVAC | 20/12/2019 | AU2019410737; CA3118034; CN113453707;
EP3897702; BR112021009422; US20220040281;
IN202117021863 | | WO2004037189 | RNA/DNA | Boost; Route of
administration | Malaria | METHODS FOR
VACCINATING AGAINST
MALARIA | GLAXOSMITHKLINE
BIOLOGICALS;
US NAVY | 22/10/2003 | US20040214938; EP2277533; EP1569515;
RU02356577; US20060188527; CN1713817;
CA2502268; AU2003285932; CN101077416;
ES2594758; JP2006512405; PL376792; CA2464253;
BRPI0401625; EP1471043; JP2004323976;
SG2004021812; US20050118331; NZ539509;
IN1983/DELNP/2005; NO20052426; NO20052426;
RU2005115837; US2006188527;
IN4821/DELNP/2008; AU2010200177;
JP2011068671 | | WO2007003384 | RNA/DNA | | Malaria | ANTI-MALARIA VACCINE | GLAXOSMITHKLINE
BIOLOGICALS | 30/06/2005 | AR055069; PE2007-0203; EP1896060; US20080317787; BRPI0613087; CN101208100; CA2613057; EA200702633; ES2529577; KR1020130111648; AU2006265329; ID048.0940; MYPI; 20063121; JP2008544969; VN1200800271; NZ591300; MTP3616; IL187769; NO20076200; ZA2007/10615; IN4730/KOLNP/2007; CO07128783; NZ564156; MXMX/a/2007/016240; PH12007502907; MA29601; DZDZP2008000046; VN17309; KR1020080030640; NO20076200 | | WO2012047679 | RNA/DNA | | Malaria | CONSENSUS ANTIGEN CONSTRUCTS AND VACCINES MADE THERE FORM, AND METHODS OF USING SAME TO TREAT MALARIA | UNIV PENNSYLVANIA | 27/09/2011 | CN110195069; EP2621540; US20130273112;
CA2812789; KR1020130138790; AU2011312465;
KR1020180096814; BR112013007051;
JP2013543721; MX355501; IN2776/DELNP/2013 | | WO2022027107 | RNA/DNA | | Malaria | IMMUNOGENIC
COMPOSITIONS | MACFARLANE
BURNET INSTITUTE
FOR MEDICAL
RESEARCH & PUBLIC
HEALTH | 06/08/2021 | AU2021322831; EP4192498; KR1020230080396;
TH2301000640; IN202347014090 | - Earlier applications filed in 2003 (expected to expire in 2023) - Latest filing in 2021 - Main players: Curevac, GSK - GSK filings in a large number of countries ## Monitoring – Malaria (6 results) | oduction | | mRNA Vaccines | ; | | | | | | |---------------------|---------|-----------------------------------|-----------|---|--|--|-------------|--| | Pub. Number | RNA/DN | Administration | Target(s) | Title | Abstract | Applicants | Application | Related patent documents | | (Patentscope link) | A | - | -7 | | | (NORMALIZED) | Date | (Patentscope accessed on 27.06.2023 Espacenet on 28.06.2023) | | WO2019140136 | mRNA | <u> </u> | Malaria | MALARIAL | Compositions, methods, and regimens for vaccinating subjects against | UNIV WASHINGTON | 10/01/2019 | US20200338178; IN202047034174 | | | | | | VACCINATION
METHODS AND
REGIMENS | malaria parasites are provided herein. The compositions include first and second compositions having priming and/or trapping components. The priming components include, but are not limited to, DNA or RNA polynucleotides, and the trapping components include, but are not limited to, DNA or RNA polynucleotides, one or more attenuated sporozoites and/or other liver-specific antigens as viral or other formulations. Following administration of one or more of the compositions provided herein using one or more of the vaccination regimens and/or methods, high levels of liver resident memory CD8+T cells are induced in the subjects leading to protection against sporozoite challenge. | | | | | WO2020128031 | mRNA | | Malaria | RNA FOR MALARIA
VACCINES | The present invention is directed to a coding RNA for a Malaria vaccine. The coding RNA comprises at least one heterologous untranslated region (UTR), preferably a 3'-UTR and/or a 5'-UTR, and a coding region encoding at least one antigenic peptide or protein derived from a Malaria parasite, in particular at least one antigenic protein derived from circumsporozoite protein (CSP) of a Malaria parasite (e.g. Plasmodium falciparum). The present invention is also directed to compositions and vaccines comprising said coding RNA in association with a polymeric carrier, a polycationic protein or peptide, or a lipid nanoparticle (LNP). Further, the invention concerns a kit, particularly a kit of parts comprising the coding RNA, or the composition, or the vaccine. The invention is also directed to a method of treating or preventing Malaria, and the first and second medical uses of the coding RNA, the composition, the vaccine, and the kit. | | 20/12/2019 | AU2019410737; CA3118034; CN113453707;
EP3897702; BR112021009422; US20220040281;
IN202117021863 | | WO2004037189 | RNA/DNA | Boost; Route of
administration | Malaria | METHODS FOR
VACCINATING
AGAINST MALARIA | The invention pertains to methods for protecting against malaria
infection by vaccination. The method of the invention involves priming
an anti-malaria immune response with a DNA-based vaccine and
boosting that response with a protein-based vaccine. The method of the
invention also relates to broadening the resulting immune response by
boosting with a protein-based vaccine. | GLAXOSMITHKLINE
BIOLOGICALS;
US NAVY | 22/10/2003 | US20040214938; FP2277533; FP1569515;
RU02356577; US20060188527; CN1713817;
CA2502268; AU2003285932; CN101077416;
ES2594758; JP2006512405; PL376792; CA2464253;
BRP10401625; EP1471043; JP2004323976;
SG2004021812; US20050118331; NZ539509; | | WO2007003384 | RNA/DNA | | Malaria | ANTI-MALARIA
VACCINE | There is provided, inter alia, a method for the prophylaxis of productive malaria infection in travelers to endemic regions comprising the administration of suitable amounts of a formulation comprising a Plasmodium antigen or an immunogenic fragment or derivative thereof and an adjuvant, comprising a lipid A derivative and a saponin in a liposome formulation. | BIOLOGICALS | 30/06/2005 | AR055069; PE2007-0203; EP1896060;
US20080317787; BRP10613087; CN102108100;
CA2613057; EA200702633; ES2529577;
KR1020130111648; AU2006265329; ID048.0940;
MYPI; 20063121; JP2008544969; VN1200800271;
NZ591300; MTP3616; IL187769; NO20076200; | | <u>WO2012047679</u> | RNA/DNA | | Malaria | CONSENSUS ANTIGEN CONSTRUCTS AND VACCINES MADE THERE FORM, AND METHODS OF USING SAME TO TREAT MALARIA | Provided herein is consensus amino acid sequences of P. falciparum (P.f.) proteins and their encoding sequences, as well as expression constructs expressing the sequences. Also provided herein are methods for generating an immune response against P. falciparum using the expression constructs provided herein. | UNIV PENNSYLVANIA | 27/09/2011 | CN110195069; EP2621540; US20130279112;
CA2812789; KR1020130138790; AU2011312465;
KR1020180096814; BR112013007051;
JP2013543721; MX355501; IN2776/DELNP/2013 | | WO2022027107 | RNA/DNA | | Malaria | IMMUNOGENIC
COMPOSITIONS | Immunogenic or vaccine compositions for preventing malaria, comprising or encoding CSP N-terminal (NT) sequences capable of presenting NT epitopes to a subject, and methods of administering same. | MACFARLANE
BURNET INSTITUTE
FOR MEDICAL
RESEARCH & PUBLIC
HEALTH | 06/08/2021 | AU2021322831; EP4192498; KR1020230080396;
TH2301000640; IN202347014090 | - International Patent Classifications used to search is A61K39/015 : Hemosporidia antigens, e.g. Plasmodium antigens - In depth review of the patent applications required - Abstract. Description and claims accessible through external links to full documents - The last two records are specific to P. falciparum, the others cover P. vivax ## Monitoring – Papillomaviridae (HPV) (17 results) | Pub.
Number
(Patentsc 🖵 | RNA/DNA | Target(s) | Title | Applicants
(NORMALIZED) | Applicatio
n Date | Related patent documents (Patentscope accessed on 27.06.2023 Espacenet on 28.06.2023) | |-------------------------------|---------|------------------------|--|---|----------------------|--| | WO2005089164 | RNA/DNA | | INDUCING CELLULAR IMMUNE RESPONSES TO HUMAN PAPILLOMAVIRUS USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS | EPIMMUNE | | EP1732598; CA2552508; AU2005222776 | | WO2008145745 | RNA/DNA | Papillomaviridae (HPV) | VACCINE AGAINST HPV | SMITHKLINE BEECHAM | 01/06/2007 | - | | <u>₩02010085697</u> | RNA/DNA | ` ` ` | IMPROVED VACCINES FOR HUMAN
PAPILLOMA VIRUS AND METHODS FOR
USING THE SAME | UNIV PENNSYLVANIA | : | CA2653478; US20100189730; CN107267530; PT2393496;
EP2393496; CN102292089; CA2749120; EA201170965;
KR1020110106901; ES2592204; AU2010206611; JP2012515557;
PL2393496; IN2532/KOLNP/2011 ; MX2011007692;
MXMX/a/2011/007692; JP2015192673 | | WO2011128247 | RNA/DNA | Papillomaviridae (HPV) | | DKFZ DEUTSCHES
KREBSFORSCHUNGSZE
NTRUM | 14/04/2010 | EP2377879 | | WD2013055326 | RNA/DNA | Papillomaviridae (HPV) | VACCINES FOR HUMAN PAPILLOMA
VIRUS AND METHODS FOR USING THE
SAME | THE TRUSTEES OF THE
UNIV PENNSYLVANIA | | CA2848658; EP2750703; CN103889450; EA201490758;
KR1020140076613; AU2011378812; KR1020190056450; JP2014530610;
KR1020210019133; KR1020220035279; MX360449;
IN3777/DELNP/2014; JP2018029579; AU2017265076;
JP2020039341; JP2022068160 | | WO2013092875 | RNA/DNA | Papillomaviridae (HPV) | VACCINES AGAINST HPV | NYKODE THERAPEUTICS | | CN104039833; CA2858963; EP2793937; US20150306217;
KR1020140107569; RU2014129788; AU2012356969; BR112014015016;
RU0002644201; DK2793937; EP3533462; JP2015508284;
ES2730718; PT2793937; NZ626124; IL233217;
IN4813/CHENP/2014; ZA201404516 | | <u>WO2014165291</u> | RNA/DNA | , , | IMPROVED VACCINES FOR HUMAN
PAPILLOMA VIRUS AND METHODS FOR
USING THE SAME | UNIV PENNSYLVANIA;
INOVIO
PHARMACEUTICALS | 12/03/2014 | EP3586870; CA2898522; KR1020150130438; EP2968527;
US20160038584; CN105307678; EA201591688; AU2014248535;
JP2016512553; EA201992282; CN114181961; KR1020220140025;
MX2020011299; MXMX/a/2015/011484; IN7923/DELNP/2015;
AU2017204518; ZA201506879 | - Sorting by filing date shows continuous interest and patenting since 2005 (until 2022) - Important player: Uni Pennsylvania - Patenting, at least in India and South Africa in addition to HICs ## Monitoring – Papillomaviridae (HPV) (17 results) | Pub.
Number
(Patentsc 🚽 | RNA/DNA | Target(s) | Title | Applicants
(NORMALIZED) | Applicatio
n Date | Related patent documents [Patentscope accessed on 27.06.2023 Espacenet on 28.06.2023] | |-------------------------------|---------------|------------------------|--|--------------------------------|----------------------|--| | WO2016071306 | RNA/DNA | Papillomaviridae (HPV) | THERAPEUTIC HPV16 VACCINES | JANSSEN
PHARMACEUTICALS | | EP3421046; MA40902; LT3215187; PT3215187; AU2015341926; CA2965562; SGI1201702997Y; KR1020170083562; MYPI; 2017701524; EP3215187; CN107075521; EA201790976; ID2018/03330; DK3215187; BR112017009177; ES2697903; TH180279; JP2017534286; YN1/053875; RS58080; PL3215187; US20160122396; AR102527; NZ730802; IN201717013532; IL251895; CL201701089; CL2017-1089; MX2017005788; SA517381457; CN201580060062.4; CD20170004838; CS2017004838; CD20170004838; CD20170004838; US20200164057; JP2018148890; US20180344841; AU2018282463; US20200164057; ZA201703055 | | <u>WO2017029360</u> | RNA/DNA | Papillomaviridae (HPV) | THERAPEUTIC HPV18 VACCINES | JANSSEN
PHARMACEUTICALS | 18/08/2016 | MYPI; 2018700619; SG10202001501Q; AU2016309743;
CA2995740; CN107921110; KR1020180042295; EP3337500;
ID2018/08219; BR112018003019; EA201890527; JP2018523486;
TH1801000954A; US20170051019; AR105775; JOP/2016/0189;
US20170369534; IN201817003985; SG11201800943Y;
CL2018000432; CL2018-432; MX2018002106; IL257604;
SA518390954; CO20180001623; NZ740514; YN1/074525; | | WD2017070616 | mRNA | Papillomaviridae (HPV) | Sexually transmitted disease vaccines | MODERNATX | 21/10/2016 | CA3002819; AU2016342376; EP3364982; US20180289792;
JP2018531290; US20180296662 | | WO2017096432 | New construct | Papillomaviridae (HPV) | IMMUNOMODULATING COMPOSITION
FOR TREATMENT | JINGANG MEDICINE | 09/12/2016 | AU2015905099; AU2016367712; CA3006779; KR1020180083437;
CN108601951; EP3386593; US20190134181; JP2019505567 | | WO2018060288 | RNA/DNA | Papillomaviridae (HPV) | COMPOSITIONS AND METHODS OF
TREATMENT OF PERSISTENT HPV
INFECTION | GLAXOSMITHKLINE
BIOLOGICALS | 27/09/2017 | EP3518966; US20200123571; BE1024774 | | WO2021081480 | RNA/DNA | Papillomaviridae (HPV) | IMPROVED VACCINES FOR
RECURRENT RESPIRATORY
PAPILLOMATOSIS AND METHODS FOR
JUGIANG THE SAME | INOVIO
PHARMACEUTICALS | 26/10/2020 | AU2020371792; CA3155370; BR112022007615; EP4048682;
KR1020220114531; CN115443287; US20230000969; JP2022554132;
MXMX/a/2022/004836; BR112022007615; IN202217028514 | - Janssen, as a new player in 2015 and filing in a large number of countries including Malaysia, Indonesia Vietnam and Thailand - Moderna filing in 2016, only in HICs ### Monitoring – Target : Papillomaviridae (HPV) (17 results) | Pub.
Number | RNA/DNA Target(s) Title | | Title | Applicants
(NORMALIZED) | Applicatio
n Date | Related patent documents (Patentscope accessed on 27.06.2023 Espacenet on | National
phase entry | |----------------|-------------------------|------------------------|--|--|----------------------|--|-------------------------| | (Patentsc 🕌 | | Υ-, | ~ | L. | <u></u> - T | | deadline (🕌 | | WO2021095838 | mRNA | Papillomaviridae (HPV) | NUCLEIC ACID LIPID PARTICLE
VACCINE ENCAPSULATING HPV MRNA | DAIICHI SANKYO NATIONAL INSTITUTES OF BIOMEDICAL INNOVATION HEALTH & NUTRITION | 13/11/2020 | CA3160839; AU2020382378; CN114650841; JPWO2021095838;
BR112022009429; KR1020220102617; EP4059515; US20220409540;
IL292989; BR112022009429; IN202247031874 | 15/05/2022 | | WO2021231925 | RNA/DNA | ; ' ' ' ' | VACCINES FOR RECURRENT
RESPIRATORY PAPILLOMATOSIS AND
METHODS OF USING THE SAME | INOVIO
PHARMACEUTICALS | 14/05/2021 | AU2021271860; CA3177949; KR1020230011335; EP4149536;
CN115803051; EA202293315; PE2023-0349; IL297903;
TH2201007261; JP2022568868; MXMX/a/2022/014248;
PH12022553102; CO20220017989; SA522441314 | 14/11/2022 | | WO2023021116 | RNA/DNA | Papillomaviridae (HPV) | THERAPEUTIC PAPILLOMA VIRUS
VACCINES | SIRION BIOTECH
UNIVERSITAET
REGENSBURG
INPROTHER
PROBIOGEN | 18/08/2021 | International phase | 18/02/2024 | | WO2022204597 | RNA/DNA | | DNA ENCODED NANOPARTICLE
VACCINE AGAINST HUMAN
PAPILLOMAVIRUS, AND METHODS OF
USE THEREOF | THE WISTAR INSTITUTE
OF ANATOMY AND
BIOLOGY | 28/03/2022 | International phase | 26/09/2023 | Recently filed international patent applications need to be monitored until the national phase entry deadline to understand geographical filing scope. This covers the countries bound by the Patent Cooperation Treaty (PCT). ## mRNA TT Programme IP resources Thank you!!