

Models for Therapeutic HPV Vaccine: Preclinical study

Presented by
Supichcha Saithong, Ph.D.
Chula Vaccine Research Center (Chula VRC)
Chulalongkorn university

WHO/MPP mRNA Technology Transfer Programme Regional meeting in South-East Asia Shangri-la hotel, Bangkok, Thailand 31 Oct-1 Nov 2023

Challenges and Opportunities of HPV Therapeutic Vaccines

Species specific

viruses only replicate and complete their life cycle in human

HPV genotypes

- Consists of more than 450 genotypes
 - Divided into 2 groups
 - 1) Low risk (LR): causing mainly genital warts
 - 2) High risk (HR): causing invasive cancer
 - \rightarrow ~15 types
 - → HPV16 and HPV18 are the two most common types, accounting for ~70%

Express two potent oncoproteins, E6 and E7

The 'low-' and 'high-risk' papillomaviruses (PVs) have different life cycle strategies

- Slow division of an infected stem-like cell maintains the lesion
- E6/E7 proteins increase the proportion of proliferating cells
- Easier to model in cell culture systems

The most classically used preclinical tool for therapeutic HPV vaccine research "TC-1 Luc model"

Features

- By Dr. T.C. Wu (Johns Hopkins University, Baltimore, MD, USA)
- Derived from primary lung epithelial cells of C57BL/6 mice
- Expressed HPV16 E6 and E7 oncogenes and firefly luciferase, which allows for the monitoring of tumor growth
- Can apply to in vitro and in vivo study

Mice bearing TC1-Luc cell induced tumors

Vivek Verma1 et al. Oncotarget, Vol. 7, 2016.

Vaccine prototypes which using "TC-1 Luc model" in preclinical study

Present

Vaccine	Vaccine type	Vaccine design	Results			Study start/Date	Status
name			Tumor regression	Prevent tumor growth	Prevent tumor relapse	of publication	
gDE7 mRNA-LNP	mRNA	HPV16 E7	√	ND	✓	2023	Preclinical study
E7 RNA- LPX	mRNA	HPV16 E7	√	ND	✓	2019	Preclinical study
ProCervix (also called GTL001)	recombinant proteins	HPV16/ 18 E7	√	√	✓	2013	Phase II
VGX-3100	DNA	HPV16/18 E6/E7	✓	✓	✓	2008	Phase III

Past

ND: Not determined

Limitations of TC-1 cells

- Only be used in C57BL/6N mice
- Being a tumor model but not a model for infection
- Not represent the complexity of the cell types that can be transformed by HPV
- Unavailable for other HPV serotypes

VGX-3100

No better than placebo at improving lesion regression and viral clearance

Inovio's endpoint switcheroo backfires as phase 3 misses on new measure, hits on old

By Nick Paul Taylor · Mar 2, 2023 5:20am

ProCervix or GTL001

In phase II clinical trial NCT01957878, the GTL001 wasn't superior to placebo in viral clearance. In general, the future of protein-based vaccines relies upon the enhancement of immunogenicity and T-cell response through adjuvant and fusion protein strategies.

Developing animal models in therapeutic HPV vaccine testing

C3 cells

Features

- Tumor cell line generated by immortalization and transfection of B6 mouse embryonic cells with the complete HPV16 genome
- Expresses the full HPV16 genome (1)

Limitation

 More difficult to treat by vaccine approaches than TC-1 cells by intrinsic resistance mechanisms such as the Qa-1/NKG2A axis (2)

mEER cells (3)

Features

- Mouse tonsil-derived epithelial expressing HPV16 E6 and E7 genes
- Have advantages in terms of better translation toward human HNSCC

Limitation

- Only be used in C57BL/6N mice this genetic background
- Not being suitable for studies on pre-malignant or persistent infections.
 - (1) M. C. W. Feltkamp et al. Eur. J. Immunol. 1993
 - (2) Van Montfoort N et al. Cell, 2018
 - (3) Stephanie Dorta-Estremera et al. Cancer Res, 2018

Another potential animal models

Cotton-tail rabbit PV (CRPV)

- Present the E1, E2, E6 or E7 encoding DNA vaccines could elicit therapeutic efficacy
- The *Sylvilagus floridanus* papillomavirus 1 (SfPV1) rabbit model has been used to investigate effective targets for therapeutic purposes (1)

Macaca fascicularis papillomavirus type 3 (MfPV3)

- Has a close phylogenetic and phenotypic relationship to HPV16 (2)
- Can be used for prevalent or persistent genital infection

Beagle dogs

- Canine immune system and immune responses are more similar to humans
- Modify the dogs' cells expressed HPV16 E7 by using a lentiviral vector (3)

- (1) Nancy M. Cladel et al. Phil. Trans. R. Soc. B, 2018.
- (2) Chen Z et al. Front Microbiol (2019)
- (3) Totain et al. Laboratory Animal Research (2023) 39:14

Developing animal models in therapeutic HPV vaccine testing

Models	Species	Immunogens	Suite for tumor model	Suite for persistent infection	Closely to human immune response / great translation toward human
TC-1 cells	C57BL/6N mouse	HPV16 E6/E7	+	-	-
C3 cells	C57BL/6N mouse	Full genome HPV16	+	-	-
mEER cells	C57BL/6N mouse	HPV16 E6/E7	+	-	+
Cotton-tail rabbit PV		High risk HPVs	+	+	+
<i>Macaca fascicularis</i> PV type 3		HPV16	-	+	+++
Beagle dogs		High risk HPVs	-	+	++

Research gap

Tumor model

- Which animal models are suitable for testing tumor regression efficacy?
- Is tumor model in mice suitable for go no go to clinical study?

Persistent infection and precancerous models

Which animal models are suitable for persistent infection and precancerous models?