Epidemiology of malaria vivax in South East Asia and key immunological considerations for vaccine development

Rintis Noviyanti
1National Research and Innovation Agency/BRIN, Indonesia
2Exeins Health Initiative (EHI), Jakarta, Indonesia

WHO/MPP mRNA Technology Transfer Programme Regional meeting in South-East Asia
Shangri-la Hotel Bangkok, Thailand 31 Oct-1 Nov 2023
Global burden of malaria

- In 2020: 241 million malaria cases in 85 malaria endemic countries (increasing from 227 million in 2019)

- Malaria deaths were estimated 627,000; an estimated 47,000 (68%) of the additional 69,000 deaths were due to service disruptions during the COVID-19 pandemic.
The global prevalence of patent *Plasmodium vivax* in 2017

Global burden under-estimates the latent and sub-patent reservoirs of infections

Battle and Baird, 2021
Malaria vaccine is required to add to the current interventions (drug and bednets) to control and eliminate malaria.

P. falciparum: PfRTS,S, Pf R21/M-Matrix, and PfSPz

P. vivax: PvDBP, Rv21, and mRNA-based vaccine
P. vivax malaria and challenges in vaccine developments

- The second most common cause of malaria
- Widely distributed species
- Complex life cycle: present as a latent form - hypnozoites
- Mostly present as asymptomatic individuals
- Hard to grow in *in vitro* culture
- Limited availability of good animal model for testing *P. vivax* vaccine efficacy
- Require transgenic parasites (ie. *P. berghei* sporozoites expressing PvCSP)
- The need of highly potent adjuvants
Key immunological considerations for vaccine development

• Include the multiple-stage proteins involved in parasite development (i.e. against sporozoites, liver-stage, sexual and asexual stages)

• Induce protective immune response (humoral and cellular)

• Overcome antigenic diversity or consisting relatively conserved parasite epitopes (several epitopes that are represented by various MHC)
Malaria Vaccine: *P. falciparum* and *P. vivax* - updates

Other potential Pv vaccine candidate:

1. PvRMC-1, a Multistage Chimeric Protein (Matos et al. 2023): PvCelTOS, PvCyRPA, Pvs25
2. Rv21 (Salman et al. 2017): PvCSP
3. Combination of Rv21, PvcSP-VLP, and PvTRAP viral vectors (Atcheson et al. 2018)
<table>
<thead>
<tr>
<th>Candidate</th>
<th>Phase</th>
<th>Key findings</th>
<th>Clinical Trial Number</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preerythrocytic stage vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMP001</td>
<td>1/2a</td>
<td>Recombinant PvCSP with adjuvant AS01B. Reduction of parasitemia, but low efficacy.</td>
<td>NCT01157897</td>
<td>(21)</td>
</tr>
<tr>
<td>Peptides N R&C</td>
<td>1b/2</td>
<td>PvCSP derived from long synthetic peptides (LSP) with Montanide ISA 720 and 51. Long-lasting antibody response, with 36.6% efficacy in naive volunteers.</td>
<td>NCT0108184</td>
<td>(22, 23)</td>
</tr>
<tr>
<td>PvRAS</td>
<td>1/2a</td>
<td>P. vivax irradiated sporozoite. Poor cellular response and 42% efficacy.</td>
<td>NCT01082341</td>
<td>(24)</td>
</tr>
<tr>
<td>Blood-stage vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChAd63-MVA-PvDBPII</td>
<td>1a/2a</td>
<td>Heterologous prime-boost regimen with recombinant viral vectors ChAd63-MVA-PvDBPII. Induction of antibodies that inhibit interaction with reticulocytes, humoral and cellular response, 50% of strain-transcendent immunity.</td>
<td>NCT01816113</td>
<td>(25)</td>
</tr>
<tr>
<td>PvDBPII-GLA-SE</td>
<td>1</td>
<td>Recombinant PvDBPII with GLA-SE adjuvant. High production of specific antibodies can inhibit interaction with reticulocytes and strain-transcendent response.</td>
<td>CTRI/2016/09/007289</td>
<td>(26)</td>
</tr>
<tr>
<td>Transmission-blocking vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pvs25</td>
<td>1</td>
<td>Recombinant Pvs25 with Montanide ISA 51 adjuvants. Good induction of antibodies and 30% reduction in infected mosquitoes. High reactogenicity.</td>
<td>NCT00295581</td>
<td>(27)</td>
</tr>
</tbody>
</table>
Some other *P. vivax* vaccine candidates

<table>
<thead>
<tr>
<th>Description/delivery system</th>
<th>Development phase</th>
<th>Antigen</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PvDBPII/GLA-SE</td>
<td>Phase I b</td>
<td>PvDBP</td>
<td>Bharadwaj et al., 2017; Singh et al., 2018</td>
</tr>
<tr>
<td>ChAd63-MVA PvDBP RII</td>
<td>Phase I a</td>
<td>PvDBP</td>
<td>de Cassan et al., 2015; Payne et al., 2017</td>
</tr>
<tr>
<td>PvDBPII-DEKnul</td>
<td>Pre-clinical</td>
<td>PvDBP</td>
<td>Ntumngia and Adams, 2012</td>
</tr>
<tr>
<td>PvMSP1</td>
<td>Pre-clinical</td>
<td>PvMSP1</td>
<td>Fonseca et al., 2016</td>
</tr>
<tr>
<td>ChAd63-PvAMA1/MVA-PvAMA1</td>
<td>Pre-clinical</td>
<td>PvAMA1</td>
<td>Bouillet et al., 2011</td>
</tr>
<tr>
<td>PvAMA1</td>
<td>Pre-clinical</td>
<td>PvAMA1</td>
<td>Vicentin et al., 2014; Arévalo-Pinzón et al., 2017</td>
</tr>
<tr>
<td>PvRBP2b</td>
<td>Pre-clinical</td>
<td>PvRBP</td>
<td>Gruszczyc et al., 2018a, Gruszczyc et al., 2018b</td>
</tr>
</tbody>
</table>

TABLE 1 | *Plasmodium vivax* blood stage vaccine candidates.
In vitro synthesis of mRNA vaccine

A. mRNA structure and function
- Contains encoded antigen sequence
- Regulates translation
- Stability/protection from degradation

B. mRNA synthesis in vitro
- Plasmid construct
- Gene sequence
- Promoter
- Ori (origin of replication)
- Antibiotic resistance gene
- E. coli
- Bacterial culture
- Medium + Antibiotic
- Plasmid purification
- Digestion with restriction enzymes

1-step reaction
- RNA polymerase
- NTPs (cap analog)
- Linear DNA template

Optional additional steps
- **Polyadenylation** (if poly(A) tail is not encoded in plasmid)
 - Poly(A) polymerase
- **Capping reaction** (alternative to cap analog)
 - Methyl donor
 - Capping enzyme

Things to consider to increase the immunogenicity of mRNA vaccines

- Addition of adjuvants to stimulate the innate and adaptive immune response (humoral and cellular and generation of memory cells)

- The adjuvant effect is essential to the recruitment and activation of APCs and priming of T cells to induce adaptive responses.
Some mRNA-based malaria vaccines to date

mRNA vaccine against malaria tailored for liver-resident memory T cells

Exploring in vitro expression and immune potency in mice using mRNA encoding the Plasmodium falciparum malaria antigen, CelTOS

Ishita N. Waghela1,2, Katherine L. Mallory1,2, Justin A. Taylor1,2, Cosette G. Schneider1,4, Tatyana Savransky3,8,9, Chris J. Janse1, Paulo J. C. Lin4, Ying K. Tan5, Drew Weissman8 and Evelina Angov1,2.

1Malawi Biologica Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States; 2Parsi Corporation, Centreville, VA, United States; 3The Geneve Foundation, Tacoma, WA, United States; 4Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States; 5Trimeresurus Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States; 6General.

Malaria is a deadly disease responsible for between 550,000 and 627,000 deaths annually. A pressing need to develop vaccines focused on malaria elimination. The complex lifecycle of Plasmodium falciparum provides opportunities not only to target the infectious sporozoite stage, introduced by anopheline mosquitoes, but also the sexual stages, which are ingested by mosquitoes during blood feeding, leading to parasite transmission. It is widely recognized that a vaccine targeting multiple stages would induce efficacious transmission reducing immunity. Technological advancements offer new vaccine platforms, such as mRNA-LNPs, which can be used to develop highly effective malaria vaccines. We evaluated the immunogenicity of two leading P. falciparum vaccine candidates, PfP25 and PfCSP, delivered as mRNA-LNP vaccines. Both vaccines induced extremely potent immune responses when administered alone or in combination, which were superior to PfP25 and PfCSP DNA vaccine formulations. Purified IgGs from PfP25 mRNA-LNP-immunized mice were highly potent in reducing malaria transmission to mosquitoes. Additionally, mice after three and four immunizations with PfCSP mRNA-LNP provided evidence for varying degrees of protection against sporozoite challenge. The comparison of immune responses and stage-specific functional activity induced by each mRNA-LNP vaccine, administered alone or in combination, also supports the development of an effective combination vaccine without any risk of immune interference for targeting malaria parasites at various life cycle stages. A combination of vaccines targeting both the infective stage and sexual/plutut stages is expected to interrupt malaria transmission, which is critical for achieving elimination goals.

npj Vaccines (2022)7:155; https://doi.org/10.1038/s41541-022-06577-8
Issue for achieving higher vaccine efficacy

• (i) generation of highly potent functional immunity - this requires a strong knowledge of mechanisms and mediators of protective responses;

• (ii) choosing the right antigens and epitopes (or combinations) that mediate protective immunity

 (multiple antigen components, the type of adjuvants, may be required to increase higher vaccine efficacy);

• (iii) developing strategies to overcome immune evasion and prevent vaccine escape

Notes: malaria exposed populations showed lower vaccine efficacy than seen in malaria naïve populations raising the prospect of considerable immune dysregulation in malaria exposed populations affects the ability to generate and maintain potent protective responses

A deeper understanding of mechanisms and key targets of immunity is needed to underpin this, and research to reveal new strategies for the induction of a higher level of protective functional immunity.

Beeson et al. 2019
THANK YOU