An update on Tuberculosis vaccine development activities
PDVAC committee members
David Kaslow, PATH (chair)

Klaus Cichutek
Paul-Ehrlich-Institute (PEI)
Langen, Germany

Sinead Delany-Moretlwe
University of Witwatersrand (Wits)
Johannesburg, South Africa

Bernard Fritzell
Independent
Bordeaux, France

Barney Graham
NIAID, Vaccine Research Center
Bethesda, USA

Gagandeep Kang
Christian Medical College,
Vellore, India

Ruth Karron
Johns Hopkins Bloomberg School of Public Health (JHSPH)
Baltimore, USA

Jerome Kim
International Vaccine Institute (IVI)
Seoul, Korea

Alejandro Cravioto (ex-officio SAGE chair)
University of Mexico
Puerto Vallarta, Mexico

Claudio Lanata
Instituto de Investigación Nutricional
Lima, Peru

Shabir Madhi
Witwatersrand University
Johannesburg, South Africa

Beno Y. Nyam
National Agency for Food and Drug Administration and Control
Lagos, Nigeria

Mark Papania
Centers for Disease Control and Prevention
Atlanta, USA

Peter Smith
London School of Hygiene and Tropical Medicine
London, UK

Yiming Shao
Chinese Center for Disease Control and Prevention (CDC)
Beijing, China

Marian W. Wentworth
Management Sciences for Health (MSH)
Medford, USA
Three priority development goals for TB vaccines

A safe, effective and affordable TB vaccine for adolescents and adults
Given the substantial disease burden in adolescents and adults, and the critical role that those with active pulmonary TB disease play in transmission of Mtb infection, the *prevention of pulmonary TB disease in adolescents and adults* is the priority strategic target in TB vaccine development.

Affordable TB vaccine for neonates and infants with improved safety and efficacy as compared to BCG
There is a need to *improve upon the BCG vaccines currently in use* by i) providing improved and longer duration of protection, ii) easing the safe administration to infants with HIV infection or other causes of immune suppression and/or iii) improving the manufacturing process to secure sustainable supply.

A therapeutic vaccine to improve tuberculosis treatment outcomes
Such a vaccine should *improve outcomes of drug therapy* by increasing the cure rate at the end of drug treatment and/or decreasing the frequency of recurrences following initial cure.
Overview of the TB vaccine pipeline

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Phase IIa</th>
<th>Phase IIb</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC/BC02</td>
<td>MTBVAC</td>
<td>DAR-901 booster</td>
<td>VPM1002</td>
</tr>
<tr>
<td>Anhui Zhifei Longcom</td>
<td>Biofabri, TBVI, University of Zaragoza</td>
<td>Dartmouth, GHIT</td>
<td>SI IPL, VPM</td>
</tr>
<tr>
<td>Ad5 Ag85A</td>
<td>ID93 + GLA-SE</td>
<td>H56: IC31</td>
<td>MIP/Immuvac</td>
</tr>
<tr>
<td>McMaster, CanSino</td>
<td>IDRI, Wellcome Trust</td>
<td>SSI, Valneva, IAVI</td>
<td>ICMR, Cadila Pharmaceuticals</td>
</tr>
<tr>
<td>ChAdOx185A-MVA85A (ID/IM/Aerosol)</td>
<td>University of Oxford</td>
<td>TB/FLU-04L</td>
<td>RIBSP</td>
</tr>
<tr>
<td>University of Oxford</td>
<td></td>
<td>M72/AS01_e</td>
<td>GSK, Gates MRI</td>
</tr>
<tr>
<td>GamTBvac</td>
<td>BCG revaccination</td>
<td></td>
<td>RUTI®</td>
</tr>
<tr>
<td>Ministry of Health, Russian Federation</td>
<td>GSK, Gates MRI</td>
<td>Archivel Farma, S.L.</td>
<td></td>
</tr>
</tbody>
</table>

Slide courtesy of Nebait Gebreselassie
Other enabling activities for TB vaccine development

TB Vaccine roadmap

Integrating the pathway for decision making from product development to policy, uptake and impact

TB Vaccine impact modelling and assessment of value
<table>
<thead>
<tr>
<th>Time (Geneva CEST)</th>
<th>Topic</th>
<th>Duration</th>
<th>Detail</th>
<th>Moderators, speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.00 – 15.05</td>
<td>Welcome and roll call</td>
<td></td>
<td></td>
<td>David Kaslow / Birgitte Giersing</td>
</tr>
</tbody>
</table>
| 15.05 – 15.10 | The context for this PDVAC meeting | 5’ | • Rationale for the topic selection
| | | | • Overview of pipeline
| | | | • Objectives of the meeting | Birgitte Giersing |
| 15.10 – 15.50 | Update on Gates MRI TB Vaccine Development Activities | (25’ + 15’) | • Update on current status on phase IIb BCG revaccination study in South Africa; discussion related to additional studies and data required for policy change.
| | | | • Review of M72/AS01 study plans, licensure and potential policy recommendation strategy; identification of critical areas for WHO/PDVAC input | Alex Schmidt (Gates MRI) |
| 15.50 – 16.20 | Review of the Global Roadmap for R&D for TB vaccines | (15 + 15) | • Purpose and process for developing the TB vaccine Roadmap
| | | | • Review of the proposed 3 themes to advance TB vaccines, and how the activities relate to the 3 WHO development goals; are there gaps? | Frank Cobelens (AIGHD) |
| 16.20 – 16.45 | Modelling the potential value of TB vaccines | (15 + 10) | • Overview of the vaccine health and impact model framework and components, and the M72/AS01 and BCG revaccination specific modelling projects | Richard White (LSHTM) |
| 16.45 - 17.00 | Discussion | 15’ | • Open session | All |
Objectives for this session

- Understand the **current status, future plans and critical issues** related to the M72/AS01 product development plan and the potential BCG revaccinations strategy;

- Review the **proposed workstreams of the TB vaccine roadmap development** and assess how they align with progressing the 3 WHO TB vaccine development goals;

- Introduce the ongoing WHO-funded **Full Value Assessment of TB Vaccines** project and assess how this progresses the WHO’s Full Value of Vaccines Assessment approach, and what if any, high priority follow-up work is advised;

- Introduce the ongoing BMGF-funded **M72/AS01 and BCG revaccination specific modelling project**, and advise if and how it could be more useful to global and country stakeholders;

- Assess the **immediate TB vaccine development related needs and priorities**, from PDR/PDVAC
Questions for PDVAC

- Are there critical activities that would benefit from PDR/PDVAC leadership and engagement, either related to M72/AS01 and BCG revaccination specifically, or enabling TB vaccine development more generally?
- Does PDVAC have recommendations on the draft TB vaccine roadmap?
- Does PDVAC support WHO co-authorship of the roadmap?
- Are there any recommendations for high priority follow up work to the WHO-funded Full Value Assessment of TB Vaccines project?
- Are there suggestions with respect to how the BMGF-funded M72/AS01 and BCG revaccination modelling project could be more useful to global and country stakeholders?
Update on Gates MRI TB Vaccine Development Activities

Alexander Schmidt, Taryn Rogalski-Salter, Robin Mogg, Nicole Frahm & Marie Green
PDVAC, September 3, 2020
GATES MRI BCG REVACCINATION STUDY
AERAS C-040-404 STUDY

- N=990, 1:1:1, primary endpoint: initial QFT-conversion, secondary EP: sustained QFT-conversion
- BCG: 45% (95%CI 6.4-68.1%) vaccine efficacy for sustained QFT conversion

DOI: 10.1056/NEJMoa1714021
GATES MRI BCG ReVax STUDY

Goal: generate data that can potentially support policy changes for BCG revaccination

- Randomized, placebo controlled, observer-blind, Phase 2b study with two arms (BCG vaccine and saline placebo)
- 1,800 QFT-negative participants 10-18 years of age are randomized 1:1 to receive a single intradermal injection
- Primary Endpoint: Sustained QFT conversion (initial conversion and IGRA positive 3 & 6 months thereafter)
- Exploratory Endpoints: Define Correlates of Protection

Clinicaltrials.gov ID NCT 04152161
alexander.schmidt@gatesmri.org
BCG ReVax STUDY STATUS

• Five sites in South Africa (SATVI, CAPRISA, Wits RHI, Desmond Tutu HRF, Be Part)
• First participant randomized November 6, 2019
• Screening and randomization paused due to COVID-19-related restrictions from March 19, 2020
• Enrolment resumed starting in July 2020 (site-by-site)
• Approx. 400 of 1,800 participants enrolled
• Enrolment completion anticipated for Q3 2021
• Primary endpoint analysis will occur when a total of 118 sustained Mtb infection events have occurred in the mITT efficacy population (anticipated in late 2023, or early 2024)
CELLULAR IMMUNITY

- Antigen-specific T cells and NK cells (McElrath)
 - Intracellular cytokine staining
- Donor-unrestricted T cells (DURTs, MAITs) (McElrath)
 - Tetramer staining
- scRNAseq (Shalek)

HUMORAL IMMUNITY

- Antibody titer, subclass and avidity (Tomaras)
 - Binding antibody multiplex assay
- Antibody function (Alter)
 - Systems serology
- Antibody-mediated mycobacterial growth inhibition (Alter)

INNATE / TRAINED IMMUNITY

- Whole blood composition (Nemes)
 - DLC-ICE
- scATACseq (Barreiro)
- EpiToF (Utz/Khatri)

OMICS ANALYSES

Bulk RNAseq (Scriba)
WHAT IS NEEDED TO ADVANCE BCG REVACCINATION?

Anticipated data availability:

• Candidate Correlate of Protection (CoP) data for prevention of sustained infection (POSI) (based on Aeras revaccination study biospecimens) in 2023.
 / Candidate CoP to be confirmed with biospecimens from Gates MRI BCG ReVax study.

• Candidate CoP data for prevention of Disease (POD) (based on M72 Phase 2b trial) in 2023.
 / To be confirmed with biospecimens from M72/AS01 Phase 3 study.
 / Best case assumption is that we can identify a CoP for progression from sustained infection to disease.

• BCG ReVax primary endpoint data (sustained IGRA-conversion) in 2024

• Other BCG developers may replicate BCG ReVax study in a second geography
• POD clinical endpoint efficacy trial is unlikely to be conducted (too large, too expensive)
M72/AS01 VACCINE DEVELOPMENT
M72/AS01\textsubscript{E} & PREVENTION OF DISEASE
PHASE 2B TRIAL IN A QFT-POSITIVE POPULATION

- 49.7\% (95\% CI 2.1 to 74.2\%) vaccine efficacy
- Acceptable safety profile

DOI: 10.1056/NEJMoa1803484 & DOI: 10.1056/NEJMoa1909953
M72/AS01_E PRODUCT DEVELOPMENT

Generate data to support licensure of the vaccine and recommendations for effective use

- GSK licensed M72/AS01_E to the Gates MRI, paving the way for continued vaccine development and potential use in LMICs
- GSK will ensure an efficient transfer of the asset technology
- Gates MRI will lead product development and sponsor future clinical trials
- GSK will provide AS01 adjuvant for the development program
- Gates MRI will actively reach out to and collaborate with the many partners and stakeholders committed to accelerating the end of the TB epidemic.
KEY TOPICS & QUESTIONS FOR M72

• Phase 3 study
 / Does M72/AS01E protect IGRA-positive individuals from disease (and for how long)?
 / Does M72/AS01E protect IGRA-negative individuals from infection (and/or disease)?
 / Primary endpoint, age range, IGRA status, participating countries, how to enrich for high risk?

• Data needed for first dossier in South Africa
 / Lower bound of 95% CI? Submission with interim data (95%CI LB>0?), followed by primary analysis data (95%CI LB>15%?)

• Delivery considerations
 / Target age groups (depending of VE in IGRA-negative individuals)
 / Delivery channels, payors?

• What needs to be included in the Phase 3 study design, and what implementation research is needed to support WHO policy recommendation, PQ and financing?
CRITICAL PATH

Clinical & Regulatory:
• Generate Safety & Immunogenicity data to support inclusion of PLHIV in Phase 3 VE trial
• Develop Phase 3 protocol jointly with stakeholders, SMEs & NRAs
• Select countries and prepare sites for Phase 3 VE trial
• Reach agreement on protocol design & initial registration package with health authorities
• Conduct Phase 3 vaccine efficacy study

Technical Development:
• Develop M72 antigen manufacturing process to support Phase 3 and commercialization.
• Develop adjuvant manufacturing process to support Phase 3 and commercialization
• Manufacture new drug product & supply Phase 3
• Identify Commercial Manufacturer / Marketing Authorization Holder and transfer M72 manufacturing
PHASE 2 STUDY IN PLHIV

• Observer-blind, 1:1 randomized study
• Primary objectives
 • Solicited AEs through 7 days post each dose
 • Unsolicited AEs through 28 days post each dose
 • All SAEs through end of study
• Secondary objectives:
 • M72-specific humoral and cellular immunogenicity
• Exploratory objectives: HIV RNA, CD4 etc.
• Study start anticipated for Nov 2020
• Sites in Durban, Cape Town, Johannesburg & Worcester
• SAHPRA approval received
• Awaiting IRB approvals
• Enrollment anticipated to start November 2020
EPI STUDY IN PREPARATION FOR PHASE 3

<table>
<thead>
<tr>
<th>Scientific Objectives</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
</tr>
<tr>
<td>• To assess prevalence of LTBI</td>
<td>• Interferon gamma (IFNg) release assay positivity by age and by site</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
</tr>
<tr>
<td>• To describe the incidence of TB</td>
<td>• Suspected TB cases by site, risk group, and overall</td>
</tr>
<tr>
<td></td>
<td>• Lab-confirmed TB cases by site, risk group, & overall</td>
</tr>
<tr>
<td>Tertiary/Exploratory</td>
<td></td>
</tr>
<tr>
<td>• To describe the association between IGRA IFNg concentration and progression to TB</td>
<td>• IGRA IFNg concentration at baseline & and risk of TB</td>
</tr>
</tbody>
</table>
EPI STUDY IN PREPARATION FOR PHASE 3

Operational goals:
• Build site capacity & train teams
• Establish operational feasibility for each site: QFT-positivity by age, quality of TB surveillance & study procedures
• Establish study cohorts; subset could be invited to participate in Phase 3 (e.g., IGRA-negatives & recent converters)

Design:
• Approx. 8,000 study participants, f/u 12 - 24 months; study to end at a given site once site is ready to start Phase 3 enrolment
• Approx. 50 sites
• IGRA status at baseline, follow-up every 2 months to identify suspected TB
PHASE 3 EFFICACY STUDY DESIGN FOR M72/AS01E

• Objectives:
 / Unequivocally demonstrate VE for POD in QFT-positive participants
 / Support licensure for use irrespective of QFT status, i.e., include enough QFT-neg participants to establish safety, immunogenicity & initial assessment of VE in QFT-neg vaccinees. (Screening for QFT status in national programs is currently not feasible)
 / Support licensure including people living with HIV
• Trial simulations suggest that at least 14,000 subjects in very high incidence settings are needed to demonstrate VE in a randomized controlled trial (1:1 vs placebo)
• An interim analysis for VE could be explored to potentially accelerate submission of a first dossier
PHASE 3: KNOWLEDGE GAPS & CHALLENGES

• Significant uncertainty with regards to incidence of *Mtb* infection & TB disease
 / Highest possible TB incidence rate needed to increase probability of success
 / Clinical trials capacity needed in poor communities in LMICs

• Significant uncertainty with regards to true vaccine efficacy (VE)
 / Primary endpoint definition appears to have impact on VE and incidence rate in IGRA-positives
 / No data on VE in IGRA-negative populations
 / No data on VE in PLHIV

• How can we mitigate uncertainties?
 / Determine site-level QFT prevalence, build capacity, enrich for high incidence, event-triggered primary analysis, adaptive trial, IDMC oversight of unblinded data
<table>
<thead>
<tr>
<th>Trial Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range</td>
<td>16 – 30 year of age</td>
<td></td>
</tr>
<tr>
<td>Proportion baseline QFT-pos</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Incidence of Disease (D) in QFT-pos</td>
<td>0.4 – 0.6% per year</td>
<td>Van Der Meeren et al (2018), NEJM</td>
</tr>
<tr>
<td>True VE in QFT-pos</td>
<td>50 – 65%</td>
<td>Van Der Meeren et al (2018), NEJM</td>
</tr>
<tr>
<td>Participant follow-up time</td>
<td>5 years</td>
<td>Study defined</td>
</tr>
<tr>
<td>Accrual time</td>
<td>3 years</td>
<td>Assumed</td>
</tr>
<tr>
<td>Participant drop out rate</td>
<td>5% per year</td>
<td></td>
</tr>
<tr>
<td>Incidence of Infection (INF) in QFT-neg</td>
<td>5% per year (i.e., sustained QFT-pos conversion)</td>
<td>Nemes et al (2018), NEJM</td>
</tr>
<tr>
<td>Incidence of D in QFT-neg</td>
<td>1.6% per year after sustained conversion (no disease among non-sustained converters)</td>
<td>Nemes et al (2017), American Journal of Respiratory and Critical Care Medicine</td>
</tr>
<tr>
<td>True VE in QFT-neg</td>
<td>VE(INF) = 25%; VE(D) = VE(INF)</td>
<td>No data</td>
</tr>
</tbody>
</table>
PHASE 3 DESIGN CONSIDERATIONS

How likely are we to succeed?

- Probability of success (i.e., study “power”) based on (i) number of observed events; (ii) true VE; and (iii) lower bound of VE needed

<table>
<thead>
<tr>
<th>Show 95% CI</th>
<th># required events when true VE =</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70%</td>
</tr>
<tr>
<td>LB on VE ></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>29</td>
</tr>
<tr>
<td>15%</td>
<td>39</td>
</tr>
<tr>
<td>20%</td>
<td>44</td>
</tr>
</tbody>
</table>

Equal randomization, Type I error = 1-sided 2.5%, 90% power

How long will it take to get the answer?

- Expected timing of analysis based on (i) sample size; (ii) underlying incidence; (iii) participant follow-up time; (iv) drop-out rate; and (v) study accrual rate
Point 1: # events needed to rigorously confirm vaccine efficacy against disease (VE(D)) depends on underlying true VE

- Probability of observing 95% CI LB for VE(D) > 0% in QFT-pos
 - 76.7, 87.4, 94, 97.7
 - 83.4, 90.2, 98.4, 99.9
 - 86.2, 93.6, 97.2, 99.5
 - 89.9, 95.3, 99, 99.8
 - 91.3, 97.7, 99.2, 99.9
 - 93.3, 97.7, 99.4, 99.9

Point 2: High probability to accrue # events needed within 4 years of study start with 7000 – 10000 / group

- Waiting an additional 6 months (e.g., to 4.5 years) increases probability to
 - ≥ 80% for 100 events with N ≥ 7000 / group, 110 events with N ≥ 8000 / group, 120 events with ≥ 9000 / group
- Probability of observing 95% CI LB for VE(D) > 0% in “all-comers” comparable to QFT-pos
- Increasing LB of CI for VE(D) from 0 to e.g., 15% significantly increases the # events required for Phase 3 success
- Probability to perform analysis in ≤ 4 years
 - 38, 85, 99, > 99, > 99
 - 7, 49, 89, 99, > 99
 - 1, 14, 61, 92, > 99
 - < 1, 2, 24, 69, 95
 - < 1, < 1, 5, 33, 78

CLINICAL TRIAL SIMULATIONS INFORM PHASE 3 STUDY DESIGN
PHASE 3 TRIAL EXPECTATIONS: # OF EVENTS EXPECTED BY BASELINE QFT STATUS

<table>
<thead>
<tr>
<th>QFT-neg</th>
<th># Disease Events</th>
<th># Infection Events</th>
<th>95% CI LB VE(INF)>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
<td>385</td>
<td>79.1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>440</td>
<td>81.5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>487</td>
<td>82.4</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>533</td>
<td>84.4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>588</td>
<td>80.7</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>633</td>
<td>92.3</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>689</td>
<td>92.2</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>733</td>
<td>92.4</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>783</td>
<td>92.5</td>
</tr>
</tbody>
</table>

Point 3: Limited power to assess VE(D) in QFT-neg participants due to low # of disease events expected.

- Only ~10% of disease events expected to be from QFT-neg participants.
- With 100 total disease events, expect over 500 infection events in QFT-neg participants.
- With ≥ 90 - 100 total disease events, high probability to show 95% CI LB for VE(INF) > 0% (Assuming VE(INF) = 25% in QFT-neg).

True Vaccine Efficacy (VE) in QFT-pos

(True VE in QFT-neg = 25%, QFT-pos disease incidence = 0.5% per year)
M72/AS01E PHASE 3: NEXT STEPS

• Primary endpoint, case definition and trial design need thorough discussion with stakeholders, subject matter experts and LMIC national regulatory agencies

• TPT implementation & impact on trial design (inclusion of HHCs, IGRA-testing while on study) will need discussion

• Country selection prep has been initiated; epidemiology study to start late 2021 / early 2022

• Phase 3 study start anticipated in early 2023
THANK YOU
R&D Roadmap for tuberculosis vaccines

PDVAC meeting
17 June 2020

Frank Cobelens
Amsterdam Institute for Global Health and Development
f.cobelens@aighd.org
Purpose

To develop a Global Roadmap for Research and Development for TB vaccines that:

➢ provides global stakeholders such as researchers, funders, industry, regulatory and policy decision makers with key actionable priorities that could help guide their actions.

➢ lists the short-term objectives and the long-term strategic objectives for global TB vaccine development.

Focus on developing and delivering affordable and effective vaccines for use in low- and middle-income countries.

European & Developing Countries Clinical Trials Partnership (EDCTP)
Clinical research to accelerate the development of new or improved drugs, vaccines, microbicides and diagnostics against poverty-related infectious diseases in sub-Saharan Africa
<table>
<thead>
<tr>
<th>Enabling conditions</th>
<th>short term</th>
<th>medium term</th>
<th>long term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversifying the pipeline</td>
<td>action(s)</td>
<td>action(s)</td>
<td>action(s)</td>
</tr>
<tr>
<td>Accelerating clinical development</td>
<td>action(s)</td>
<td>action(s)</td>
<td>action(s)</td>
</tr>
<tr>
<td>Ensuring public health benefit</td>
<td>action(s)</td>
<td>action(s)</td>
<td>action(s)</td>
</tr>
<tr>
<td>Funding</td>
<td>action(s)</td>
<td>action(s)</td>
<td>action(s)</td>
</tr>
<tr>
<td>Open science</td>
<td>action(s)</td>
<td>action(s)</td>
<td>action(s)</td>
</tr>
<tr>
<td>Stakeholder engagement</td>
<td>action(s)</td>
<td>action(s)</td>
<td>action(s)</td>
</tr>
</tbody>
</table>

Development goals (PPCs)
- A safe, effective and affordable TB vaccine for adolescents and adults
- An affordable TB vaccine for neonates and infants with improved safety and efficacy
- A therapeutic vaccine to improve TB treatment outcomes
Process for roadmap development

Close collaboration with WHO to develop a Roadmap that has WHO’s support

Roadmap development and consultation to follow WHO process:

➢ Consent workshop co-convened and co-organized with WHO (IVB & GTB)
➢ Review of draft AIGHD roadmap by PDVAC
➢ If draft roadmap is endorsed by PDVAC for co-authorship with WHO, draft will require public consultation in line with WHO processes
➢ Approval by relevant WHO bodies
Roadmap process

Stakeholders

- Global policy bodies
- National TB program managers/policy makers
- National EPI managers/policy makers
- Technical assistance agencies
- Researchers involved in TB vaccine development
- Modelers
- Vaccine manufacturers
- Regulators
- Product Development Partnerships
- Major research funders
- Major donors of immunization and TB control
- Advocacy & community representatives
Roadmap process

Oct-Dec 2019

Stakeholder interviews
N = 22

Objectives
Get a comprehensive overview of the clinical development pipeline
Elicit perspectives on the TB vaccine development goals
Define barriers to achieve those goals*
Define solutions to overcome these barriers*

*preclinical – clinical – post-licensure

Stakeholders
Global policy bodies
National TB program managers/policy makers
National EPI managers/policy makers
Technical assistance agencies
Researchers involved in TB vaccine development
Modelers
Vaccine manufacturers
Regulators
Product Development Partnerships
Major research funders
Major donors of immunization and TB control
Advocacy & community representatives
Roadmap process

Stakeholder interviews
Oct-Dec 2019
N = 22

Consent workshop
March 2020
N = 34 (+)

Stakeholders
- Global policy bodies
- National TB program managers/policy makers
- National EPI managers/policy makers
- Technical assistance agencies
- Researchers involved in TB vaccine development
- Modelers
- Vaccine manufacturers
- Regulators
- Product Development Partnerships
- Major research funders
- Major donors of immunization and TB control
- Advocacy & community representatives

Objectives
- Clarify and specify the overall goals and key challenges of TB vaccine development
- Define knowledge gaps and actions addressing the key challenges across the development pathway
- Reach consensus about prioritization, interdependencies and timing of the actions
- Define supportive conditions and next steps in the design of the TB R&D roadmap
Roadmap process

Oct-Dec 2019

Stakeholder interviews
N = 22

results

March 2020

Consent workshop
N = 34 (+)

draft 1-2

Consent workshop
N = 34 (+)
Roadmap process

- **Oct-Dec 2019**
 - Stakeholder interviews
 N = 22

- **March 2020**
 - Consent workshop
 N = 34 (+)

- **Sept 2020**
 - PDVAC
 - Draft 1-2
 - Draft 3

- **Sept-Oct 2020**
 - Public consultation
 - Draft 3
 - Finalize

Public consultation finalize
Diversifying the pipeline – key barriers

➢ Relatively few candidates in preclinical and early clinical development
➢ Approach to vaccine development taken thus far is too narrow: emphasis on stimulating classical, CD4+ Th1 cells
➢ Only limited set of candidate TB antigens are currently considered: known Mtb virulence factors
Diversifying the pipeline – R&D actions

To further expand our knowledge of the human protective immune responses, identify biomarkers that correlate with protection and explore new approaches to TB vaccine discovery and vaccine delivery

- Conduct observational clinical studies combining pathogenesis and immunology
- Study the role of non-conventional cellular immunity, antibody responses and trained innate immunity
- Identify biomarkers and biosignatures that correlate with vaccine-induced protection
- Develop new vaccine concepts that can induce alternative immune responses
- Study mucosal immune responses
- Deploy genome-wide strategies for antigen discovery
- Study the effects on vaccination outcomes of adjuvants, vaccine platforms and lineage of the Mtbb challenge strain
- Explore new routes of vaccine administration
- Study how vaccines can direct immune responses to the lungs
- Develop a controlled human infection model for immunobiology studies
Accelerating clinical development – key barriers

➢ Lack of relevant, validated preclinical models that predict infection and disease in humans
 ➢ limits effective stage gating/down-selection of candidates for clinical development

➢ Lack of evidence to support decisions to move a candidate forward through the clinical development pipeline
 ➢ lack of agreed laboratory correlates of protection
 ➢ necessitates large phase II/III trials of long duration with prevention of disease (PoD) as clinical efficacy endpoint
 ➢ alternative efficacy endpoints for proof-of-principle: prevention of infection (PoI), prevention of recurrence (PoR)
 ➢ but unknown to what extent PoI or PoR endpoints predict PoD
To develop, optimize and use diverse “fit for purpose” animal models that can predict/replicate findings in humans

2.1 Optimized animal models
2.2 Comparison of vaccine candidates within and across animal models

- Develop fit for purpose animal models
- Develop animal models to provide insight into the relation between *Prevention of Infection* and *Prevention of Disease*
- Develop immune compromised animal models that can predict/replicate findings in specific human target populations

- Standardize and harmonize animal models
- Perform head-to-head testing of candidate vaccines
To define meaningful trial endpoints, improve the efficiency and standardization of TB vaccine trials and build trial capacity

- Define and develop standardized **PoD trial endpoints** that better capture the various TB disease states in diverse target populations
- Define and validate **correlates of protection** for TB disease
- Define and develop better **Pol trial endpoints**
- Quantify the clinical translation of Pol into PoD

- Harmonize clinical trial protocols
- Develop new models for TB vaccine trials with increased efficiency

- Make inventory of **clinical trial site capacity**
- Collect **epidemiological data in sites** considered for phase II/III trials
- Develop **vaccine trial sites**
- Study potential barriers to trial acceptance
- Promote community engagement in TB vaccine trials
Ensuring public health benefit – key barriers/needs

➢ Need to understand countries’ likely demand for a new TB vaccine and associated considerations when added to their national immunization programmes (*value proposition*)
 ➢ Especially for vaccine to be used in adults and adolescents

➢ Need for evidence on how to integrate vaccine implementation with ongoing TB prevention efforts and how to use the vaccine among vulnerable groups
 ➢ Need to understand most (cost-)effective use

➢ Need for estimating the national and global demand to stimulate manufacturers to enter into the market and prepare and scale-up vaccine production
To quantify key epidemiological and health economic metrics to support vaccine introduction, and evaluate vaccine effectiveness and impact post-licensure

Epidemiology and Modeling

4.1 Country-specific data and projections

4.2 Post-licensure studies

- Conduct in-depth country-specific value proposition analyses
- Collect epidemiological data at country and subnational level
- Modelling to define vaccine development investment cases and potential country-specific vaccine use cases

- Develop valid approaches for real-life vaccine scale-up studies
- Conduct post-licensure evaluations of vaccine effectiveness, impact and safety
Ensuring public health benefit (2)

To understand user preferences and implementation needs for new TB vaccines

ENSURING OPTIMAL IMPLEMENTATION

5.1 Health system conditions for vaccine introduction

- Define the generic public health system requirements to deliver a new TB vaccine
- Conduct pre-introduction assessments of country immunization programmes

5.2 Barriers and enablers for vaccine uptake

- Assess drivers of acceptability and uptake of new TB vaccines in various settings
Key enabling conditions: funding

<table>
<thead>
<tr>
<th>FUNDING</th>
<th>A1 Attract new investments in TB vaccine R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> Develop a comprehensive global value proposition for TB vaccines</td>
</tr>
<tr>
<td></td>
<td>> Broaden the funding base with governments, charity and donors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A2 Innovate financing for TB vaccine R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Establish partnerships for joint funding of trials</td>
</tr>
<tr>
<td>> Provide clarity on the scope of R&D activities and collaboration between funders</td>
</tr>
<tr>
<td>> Customize calls to clinical development pathway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A3 Create mechanisms for reducing financial risk in early stages of development</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Market shaping to reduce commercial uncertainties</td>
</tr>
<tr>
<td>> Manage intellectual property</td>
</tr>
</tbody>
</table>

www.aighd.org
Key enabling conditions: open science

Open Science

B1 Promote timely and open access of data, specimens and results

- Promote open access publication and open access databases
- Promote sharing of biospecimens
- Establish publicly searchable patent databases

B2 Create a mechanism for coordinating open science

- Establish a platform for data sharing
- Develop and coordinate the systems and procedures needed for efficient data and specimen sharing
Key enabling conditions: stakeholder engagement

<table>
<thead>
<tr>
<th>STAKEHOLDER ENGAGEMENT</th>
<th>C1 Create a supportive environment for TB vaccines</th>
<th>C2 Overcome barriers to delivery and uptake</th>
<th>C3 Promote TB vaccine and research literacy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> Raise political commitment</td>
<td>> Engage with end-user communities</td>
<td>> Create a global platform for community engagement and training</td>
</tr>
<tr>
<td></td>
<td>> Advocate development and uptake</td>
<td>> Develop approaches to community level delivery</td>
<td>> Foster strategic and reciprocal partnerships</td>
</tr>
<tr>
<td></td>
<td>> Harmonize ethical and regulatory review and approval of protocols</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> Create innovative incentives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This project is part of the EDCTP2 programme. The EDCTP programme is supported under Horizon 2020, the European Union’s Framework Programme for Research and Innovation.

Rajinder K. Suri
Mark Hatherill
Jaap Goudsmit

Remko van Leeuwen
Britta Schaffmeister
Frank Deege

Nebiat Gebreselassie
Johan Vekemans
Matteo Zignol
PDVAC session on TB vaccines

Current and future evidence on TB vaccines from mathematical and economic modelling

richard.white@lshtm.ac.uk
and many, many others

2020_09_03
Overview

Objectives
• Summarize overall modelling evidence
• Summarize v prelim M72/AS01 and BCG re-vx modelling evidence
• Summarize WHO-funded, Full Value Assessment of TB Vaccines project
• Summarize BMGF-funded, M72/AS01 and BCG revaccination specific modelling project

Outcomes
• PDVAC qus, and advice on what, if any, high priority follow-up work
• PDVAC qus, and advice on if and how could be more useful to global and country stakeholders
Overview

Objectives

• **Summarize overall modelling evidence**
• Summarize v prelim M72/AS01 and BCG re-vx modelling evidence
• Summarize WHO-funded, Full Value Assessment of TB Vaccines project
• Summarize BMGF-funded, M72/AS01 and BCG revaccination specific modelling project

Outcomes

• PDVAC qus, and advice on what, if any, high priority follow-up work
• PDVAC qus, and advice on if and how could be more useful to global and country stakeholders
In the context of a busy pipeline and new trial results – use mathematical modelling to inform strategic TB vaccine development

- Vaccines fit for purpose and maximise future population-level epidemiological impact
- Mathematical modelling as a logical framework
 - Project impact of potential vaccine characteristics and implementation strategies to guide TPP/PPCs
 - Based upon clinical trial data, estimate potential future epidemiological impact to guide decision making

Informing strategic TB vaccine development
Informing strategic TB vaccine development

- Vaccines fit for purpose and maximise future population-level epidemiological impact
- Mathematical modelling as a logical framework
 - Project impact of potential vaccine characteristics and implementation strategies to guide TPP/PPCs
 - Based upon clinical trial data, estimate potential future epidemiological impact to guide decision making

Systematic review (Harris et al. 2016) summarising 23 studies
+ 4 studies published since the review (Liu, Arregui, Harris, Renardy)
+ 2 unpublished studies
Vaccine characteristics
Summary of lit. and generic candidate modelling 1/3

Over 2025-50

Prevention of infection (POI) versus prevention of disease (POD)

• Globally, prevention of disease vaccines would provide faster and greater impact than prevention of infection, but

• Impact of prevention of infection vaccine increases in higher transmission settings, eg India & SA

Pre- versus post-infection

• In China, South Africa and India, a vaccine efficacious for prevention of disease in post-infection populations would have greatest impact, but

• Vaccines efficacious for prevention of infection or disease in pre-infection populations, had increasing impact in higher transmission settings, eg India & SA
Over 2025-50

• Duration of protection
 – In LMICs, as little as 5 years protection may be cost effective if targeted at adolescents and adults
 – With 10-yearly mass campaigns, and 50% VE, duration of protection around 5 years in China, 4 years in S Africa and 3 years in India could lead to ~25% reduction in TB incidence in 2050

• Vaccine efficacy
 – In LMICs, as low as 20% VE could be cost effective if delivered to adolescents/adults
Summary of lit. and generic candidate modelling 3/3

Over 2025-50

• Age
 - In LMICs, adolescent and adult vaccination may deliver greater and faster impact than infant vaccination
 - To reduce TB in 0-4 year olds, vaccination of adolescents/adults may be more effective than vaccinating neonates directly
 - Vaccines suitable for latently infected older adults (>60 years) may provide greater impact than adolescent vaccination in ageing, reactivation driven epidemics, such as China

• HIV
 - Population-level impact in S Africa would be higher with a vaccine safe and effective in HIV positive populations.

Recruitment populations

• If maximum population-level impact by 2050 is the goal, development of vaccines for adolescents/adults should be prioritized
 • China - inclusion of older adults in clinical trials (at least 60-64 years)
• Post-infection populations in all settings
• Pre-infection populations should also, or instead, be recruited in higher transmission settings (India & SA)
• Ideally, if feasible, trials should be powered to assess efficacy in both populations
• If vaccine safe, HIV-positive populations should be recruited
Implications for vaccine development 2/2

Endpoints
- In all settings, disease endpoints would be useful for demonstrating future impact.
- However, in higher transmission settings (India & SA) infection endpoints could be used, especially as proof of concept.
- Vaccine efficacy – assess feasibility of designing trials to detect lower vaccine efficacies.

Study duration
- Studies would benefit from extended follow up to 5+ years (e.g. immuno subgroup).
 - But short duration vaccines may be impactful and cost-effective.
Overview

Objectives

• Summarize overall modelling evidence
• **Summarize v prelim M72/AS01 and BCG re-vx modelling evidence**
• Summarize WHO-funded, Full Value Assessment of TB Vaccines project
• Summarize BMGF-funded, M72/AS01 and BCG revaccination specific modelling project

Outcomes

• PDVAC qus, and advice on what, if any, high priority follow-up work
• PDVAC qus, and advice on if and how could be more useful to global and country stakeholders
Summary of BCG revac and M72 ‘-like’ impact modelling

- If efficacy signals are confirmed, both vaccines could deliver substantial population-level impact
- To maximise value proposition
 - For BCG revaccination
 - explore whether has prevention of disease efficacy
 - For M72/AS01E
 - explore duration of protection, or feasibility of mass campaigns
 - explore pre-infection efficacy, and prevention of infection

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>POI/PoD*</th>
<th>Pre-/post-infection efficacy</th>
<th>Duration of protection**</th>
<th>HIV indication</th>
<th>Incidence rate reduction in 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed BCG revaccination</td>
<td>50%</td>
<td>10 years</td>
<td>Contained</td>
<td>18% (15% 1%)</td>
<td>22% (16.5% 7%)</td>
</tr>
<tr>
<td>Assumed M72/AS01E</td>
<td>50%</td>
<td>2 years</td>
<td>Indicated, but 4%</td>
<td>37% (3% 7%)</td>
<td>34% (25% 2%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 years (or more frequent revaccination)</td>
<td>but 7%</td>
<td>50% (47% 4%)</td>
<td>59% (49% 10%)</td>
</tr>
</tbody>
</table>

* Assumed POI vaccine efficacy same, regardless of the likelihood of progression to disease upon infection
** Assuming routine vaccination of 9 year olds and 10 yearly mass campaigns of adults

Harris et al., in press, Science Trans Med
Summary of preliminary CE for M72/AS01E 1/2

Vaccine Characteristics
- **POD**: 15 years
- **50% VE**: 15 years

Population
- South Africa
- India
- Safe and equally effective
- Post-infection OR pre & post-infection

Vaccine Deployment
- **2025-2050**
- Routine for 10 or 15 year olds
- 80% coverage

Vaccine Costs
- 2 doses
- $5/course (vaccine & delivery)
- 3% discounting

Harris et al unpublished
Summary of preliminary CE for M72/AS01E 2/2

- The incremental cost per DALY averted: (discounted 2025-50, incl vaccine and TB treatment costs)
 - In South Africa, ranged from
 - $24 (2-66) for a pre- and post-infection vaccine delivered to 10 year olds, to
 - $316 (182-636) for a post infection vaccine delivered to 15 year olds
 - All scenarios explored were cost effective when compared to the latest (conservative) ‘revealed’ willingness to pay threshold of $547/life year saved [Meyer-Rath PLoS ONE 2017]
 - In India, ranged from
 - $143 (43-337) for a pre- and post-infection vaccine delivered to 10 year olds, to
 - $1,660 (718-4,246) for a post infection vaccine delivered to 15 year olds
 - Using GDP per capita threshold of 1,939 (2017) in India, all scenarios are cost effective
 - However, a local preliminary analysis of opportunity costs gave a lower bound for a WTP threshold of $223 (Ochalek, CHE working paper 2019) => a post infection only vaccine delivered to 15 year olds may not be cost effective

- A M72-like vaccine could be cost effective in both settings, depending on WTP
Overview

Objectives
• Summarize overall modelling evidence
• Summarize v prelim M72/AS01 and BCG re-vx modelling evidence
• **Summarize WHO-funded, Full Value Assessment of TB Vaccines project**
• Summarize BMGF-funded, M72/AS01 and BCG revaccination specific modelling project

Outcomes
• PDVAC qus, and advice on what, if any, high priority follow-up work
• PDVAC qus, and advice on if and how could be more useful to global and country stakeholders
Full value assessment of TB vaccines (WHO)

Method
- Data collation
- Epi & econ modelling (HS & societal)
- WHO PPCs (incl. M72/AS01 & BCG reVx)

Impact on
- TB inci, morb & mort, by DS/DR/HIV & GAVI/WHO reg
- Costs, CE, budget impact
- ROI, equity, GDP, AMR drug use

WHO

<table>
<thead>
<tr>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 10</td>
<td>11 12</td>
</tr>
<tr>
<td>Full value assessment of TB vaccines (WHO)</td>
<td></td>
</tr>
<tr>
<td>M72 & BCG revax impact and CE (BMGF)</td>
<td></td>
</tr>
<tr>
<td>Introduction and implementation data collection</td>
<td></td>
</tr>
</tbody>
</table>
Introduction Timelines: Proposed Approach

- Countries will be archetyped according to Gavi vs non-Gavi status
- Countries will be grouped into Waves of introduction (1, 2, 3, 4)
- Criteria for grouping into Waves & for date of introduction will include:
 - **Supply driven factors:**
 - Supplier prioritization, Gavi & procurement agency criteria & processes
 - **Country driven factors:**
 - Demand, political will, health systems readiness, regulatory timelines

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th></th>
<th></th>
<th>2022</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Full value assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of TB vaccines (WHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M72 & BCG revax impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and CE (BMGF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>implementation data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview

Objectives
• Summarize overall modelling evidence
• Summarize v prelim M72/AS01 and BCG re-vx modelling evidence
• Summarize WHO-funded, Full Value Assessment of TB Vaccines project
• Summarize BMGF-funded, M72/AS01 and BCG revaccination specific modelling project

Outcomes
• PDVAC qus, and advice on what, if any, high priority follow-up work
• PDVAC qus, and advice on if and how could be more useful to global and country stakeholders
Epi & econ impact of M72/AS01 and BCG reVx (BMGF)

Decision Science Framework: Uncert/VOI in
1. Product characteristics
 • Dur, POD/I, PRI/PSI, VE by HIV and repeat
2. Intro policy and implementation
 • Product, rout/mass/repeat, HIV/ART
 • Timing BCG – quick SA vs >POI vs >POD
 • Timing M72 – quick SA vs >glob Ph3 POD
3. Health system performance
 • no change, policy, new tools
4. Value
 • HS vs societal/thresholds

Method
• Data collation
• Epi & econ modelling
 M72 & BCG ReVx
 • POI & POD; PRI & PSI

• Impact on
 • TB inci, morb & mort, by DS/DR/HIV
 • CE and budget impact
• India nat and sub national

BMGF

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th></th>
<th>2022</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 10 11 12</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
<td></td>
</tr>
<tr>
<td>Full value assessment of TB vaccines (WHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M72 & BCG revax impact and CE (BMGF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction and implementation data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M72/AS01 & BCG reVx implementation strategy interviews in S Africa, India (and China)

Mixed methods
- quantitative and qualitative results
- quantitative indicators of implementation strategies
- qualitative: acceptability, challenges and solutions

Semi-structured interviews to investigate:
- implementation scenarios
- associated costs
- context-specific challenges to adolescent/adult TB vaccine implementation

Study population
- Interviewees are 8 decision makers/stakeholders per country

<table>
<thead>
<tr>
<th></th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full value assessment of TB vaccines (WHO)</td>
<td>9 10 11 12</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>M72 & BCG revax impact and CE (BMGF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction and implementation data collection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Epi/Econ model for the TB Vaccine field

In discussion with both funders, decided to create new future-proofed model, rather than adapt old ones...

Scientific and technical benefits

- Incorporate new natural history insights in vaccine impact estimates, eg self clear
- Estimate impact of combinations of protection from multiple vaccines and natural immunity
 - Eg natural + BCG revx + M72
- Very flexible

Should be able to address stakeholder questions for next 5-10 years...
Overview

Objectives
• Summarize overall modelling evidence
• Summarize v prelim M72/AS01 and BCG re-vx modelling evidence
• Summarize WHO-funded, Full Value Assessment of TB Vaccines project
• Summarize BMGF-funded, M72/AS01 and BCG revaccination specific modelling project

Outcomes
• PDVAC qus, and advice on what, if any, high priority follow-up work
• PDVAC qus, and advice on if and how could be more useful to global and country stakeholders
Acknowledgements and Thanks! (incomplete)

Contributors/Advisors:
- WHO (Gitte Giersing, Johan Vekemans)
- IAVI (Derek Tait, Shelly Malhotra)
- BMGF (Willem Hanekom, Anne Kasmar, Geoff Garnett, Ann Ginsburg)
- TBVI (Bernard Fritzell, Nick Drager)
- India (Kieran Rade, Raguram Rao)
- China (Li Tao and Lixia Wang)
- South Africa (Mark Hatherill, Michele Tamaris)
- Aeras (Tom Evans, Vicky Cardenas, Danny Casimiro, Chen Chen, Sharon Chan)

Funders:
Questions for PDVAC

- Are there critical activities that would benefit from PDR/PDVAC leadership and engagement, either related to M72/AS01 and BCG revaccination specifically, or enabling TB vaccine development more generally?
- Does PDVAC have recommendations on the draft TB vaccine roadmap?
- Does PDVAC support WHO co-authorship of the roadmap?
- Are there any recommendations for high priority follow up work to the WHO-funded Full Value Assessment of TB Vaccines project?
- Are there suggestions with respect to how the BMGF-funded M72/AS01 and BCG revaccination modelling project could be more useful to global and country stakeholders?