

Immunization, Vaccines and Biologicals

Vaccine Prioritization & Platforms Team

PDVAC, 12 December 2023

Goals and Outline

Goal: To present the global list of priority endemic pathogens for vaccine R&D

- 1. Rationale and anticipated change
- 2. Process and methodology
- 3. Results: What do stakeholders value?
- 4. Results: Global pathogen priorities
- 5. Support in developing regional R&D agendas
- 6. Monitoring
- 7. From analyses to actions

As a global health community, we must focus our efforts on developing vaccines for the pathogens that most impact communities across the world.

What?

 Identify R&D priorities: list of global endemic pathogen targets for new vaccines

Why?

- Because we want to develop vaccines that respond to regional and global needs
- Because we want to accelerate vaccine development by aligning immunization stakeholders
- Because we want to track progress in vaccine and immunization R&D under IA2030

How?

- According to IA2030 Core Principles
 - People centered: vaccines are developed to meet people's needs
 - Data driven: systematic and evidence-based approach to identify priorities
 - Partnership based: in partnership with regions and immunization stakeholders;
 - Country owned: countries and regions can translate vaccine priorities into local R&D strategies
- With support from SP7 WG, PDVAC, and SAGE
- Complementarity to other projects (Vaccines and AMR, R&D Blueprint)

How will the Global priority list be used?

Priorities will **inform** stakeholder strategies

Priorities should be **considered** in the context of existing global, regional and country R&D strategies

Regional stakeholders

- Industry: inform vaccine R&D investments
- Funders: inform capacity building for vaccine R&D
- Researchers: inform evidence generation activities
- Policy makers: build awareness of R&D pipelines

Global stakeholders

- WHO: inform activities to accelerate evidence generation, R&D, and policy making to serve low-resource settings
- Gavi: inform Vaccine Investment Strategy (VIS)
- IA2030: to monitor progress in global R&D for new vaccines

We used robust research process with regions to create the Global pathogen priority list.

2024 onwards May 2023 - December 2023 Mid 2022 Nov 2022– May 2023 Nov 2022– May 2023 4. Identify 1. Review the 2. Synthesize 3. Conduct 5. Monitor and pathogen landscape Data update survey priorities July 2023 onwards 4a. Support regional R&D agendas

Step 1: Review the landscape

Mid 2022

1. Review the landscape

- Understand existing priorities
- Learn from previous prioritization exercises
- Define criteria for prioritization
- Define pathogens in scope

Initial scope set by identifying pathogens through landscape review and applying screening questions

Screening questions	Rationale	TE TO Orga	
Not emerging infectious diseases	WHO R&D Blueprint is identifying priorities		
Human pathogens	Focus on human health		
Without licensed vaccines, or where existing vaccines do not meet the needs of certain populations	nes Focus on the most acute needs		
Have candidates in clinical development	Focus on targets with higher probability of success		
Prioritized by existing roadmaps, TPPs, or VVPs, or recommended by regional advisors	Focus on pathogens of broad interest		

· Scope has been updated based on regional advice, pipeline review, and new product licensures

Define pathogens in scope

PDVAC Actively supporting

Herpes simplex types 1 and 2

HIV-1

Influenza

Mycobacterium tuberculosis (TB)

Neisseria gonorrhoeae

Plasmodium falciparum

Respiratory syncytial virus (RSV) – scores for "Unmet needs for prevention and treatment" updated in September 2023 due to new product licensures

Salmonella (non-typhoidal)

Shigella spp

Streptococcus agalactiae (group B streptococcus)

Streptococcus pyogenes (group A streptococcus)

PDVAC Vaccine Value Profiles

Chikungunya virus

Cytomegalovirus

Hookworm

Intestinal pathogenic *E. coli* (InPEC)

Leishmania spp

Norovirus

Salmonella Paratyphi

Schistosomes

Other pathogens in scope

Chlamydia trachomatis – added in December 2022 per regional advice

Extra-intestinal pathogenic *E. coli* (ExPEC)

Hepatitis C virus – added in December 2022 per regional advice

Klebsiella pneumoniae

Mycobacterium leprae

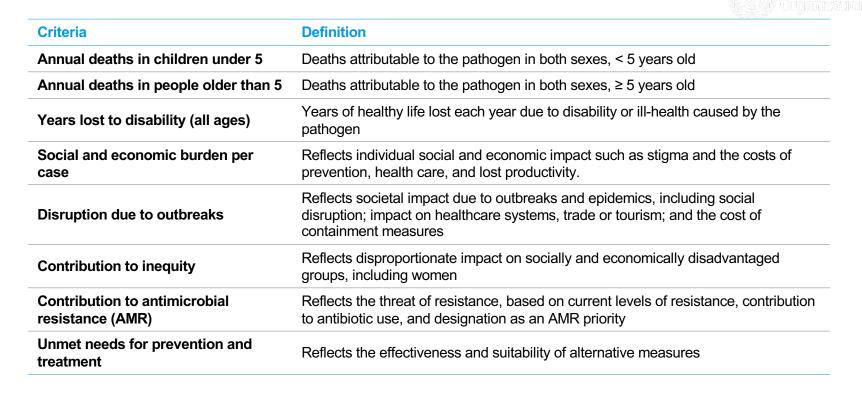
Pseudomonas aeruginosa – dropped in August 2023 due to lack of pipeline activity

Staphylococcus aureus

Dengue – added in October PDVAC meeting because epidemiology is expanding, and current vaccines do not meet public health need

26 pathogens

The list has evolved since we began this exercise and is dynamic; recent PDVAC meeting requested that Dengue be added to the analysis



Mid 2022

1. Review the landscape

- Understand existing priorities
- Learn from previous prioritization exercises
- Define criteria for prioritisation
- Define pathogens in scope

- 8 criteria for prioritization defined based on best practices and relevant precedents
- Refined by PDVAC and other experts in July 2022

Nov 2022- May 2023

2. Synthesize Data

- Each pathogen scored **region-by-region** as Very low, Low, Medium, High, or Very high for each of the 8 criteria
- Quantitative criteria scored using Global Burden of Diseases 2019 data
- Qualitative criteria scored based on literature searches. Vaccine Value Profiles, using a scoring rubric
- Scores reviewed by at least 2 regional experts and 1 disease expert
- Significant effort to ensure that scores were harmonised, systematic, and informed by the most recent and relevant data.

Mycobacterium tuberculosis (TB) Human immunodeficiency virus 1 (HIV-1)

Klebsiella pneumoniae

Staphylococcus aureus

Group A streptococcus (Streptococcus pyogenes)

Extra-intestinal pathogenic E. coli (ExPEC)

Respiratory syncytial virus

Shigella

Hepatitis C virus

Group B streptococcus (Streptococcus agalactiae)

Leishmania

Plasmodium falciparum (malaria)

Mycobacterium leprae (leprosy)

Intestinal pathogenic E. coli (InPEC)

Neisseria gonorrhoeae

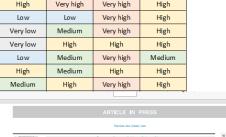
Cytomegalovirus

Chikungunya virus

Chlamydia trachomatis

Salmonella Paratyphi

Herpes simplex types 1 and 2


Non-typhoidal Salmonella

Schistosomes

Hookworm

	1 Annual	2 Annual	years lived	4 Social and		
	deaths in	deaths in	with	economic	5 Disruption	
	children	people 5	disability (all	burden per	due to	
	under 5	and older	ages)	case	outbreaks	
	Very high	Very high	Very high	Very high	Very high	
	Very low	Low	High	Very high	High	
	Very high	Very high	Very low	High	Low	
	High	Very high	Very low	High	Very low	
	Very low	Very high	Very high	High	Very low	
	High	Very high	Very low	Medium	Low	
	High	Low	Very low	Medium	High	
	Very low	Very low	Low	High	Medium	
	Very low	High	Very low	Very high	•	
	Very low	Very low	Medium	Medium		
	High	Low	Very low	High		
	Very low	Very low	Very low	Very high		
	Very low	Low	Very low	Low		
	Low	Very low	Low	High	ELSEVIER	
	Very low	Very low	Very low	Very high		
	Very low	Low	Very low	Medium	Value profil antibodies	
	Very low	Very low	Very low	Medium	Jessica A. Flemi Justin R. Ortiz	
Very low		Very low	Very low	Medium	Caroline Marsh Clint Pecenka	
	Very low	Low	Medium	High	*Center for Vaccine innov *Maternal, Newborn, Chil *Gobol Washborne Consu	
	Very low	Very low	Very low	Medium	4 School of Public Health, 5 Center for Voccine Devel 5 MMGH Consulting Conti	
	Very low	Very low	Very low	Very high	* Department of Immunia * London School of Hygier * Center for Immunication	
		Very low	Very low	Low	International Health, Joh * Center for Disease Contr * Gentre for Global Health, ** Kenya Medical Research	
		Very low	Very low	High	* Bill & Melinda Catro Fo * Department of Pharma; * Department of Paediatri	
	Very low	Very low	Very low	Low	Taves 7700; South Africa	
	Very low	Very low	Very low	Low	ARTICLE 11	

3 Annual

I resistance

Very high

Value profile for respiratory syncytial virus vaccines and monoclonal

Jessica A. Fleming 4.*, Ranju Baral 4, Deborah Higgins 4, Sadaf Khan 5, Sonali Kochar 5, You Li 6 Caroline Marshall * Patrick K. Munywoki * Harish Nair Lauren C. Newhouse * Bryan O. Nyawanda

to inequity

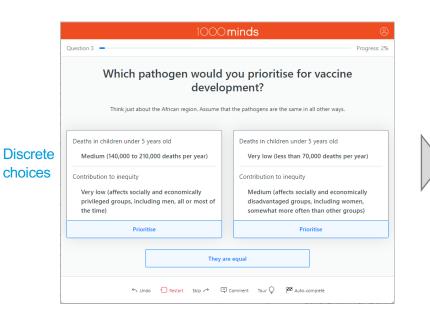
Nov 2022- May 2023

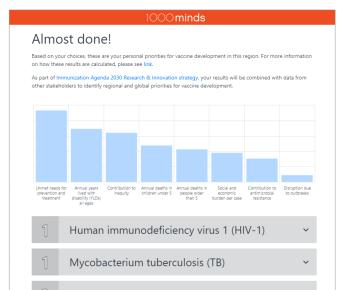
3. Conduct survey

We carried out a multi-criteria decision analysis (MCDA) survey involving policy makers and other stakeholders to develop a top 10 pathogen list for each region, and combine to create a Global Pathogen Priority List.

Why use MCDA?

- Designed for complex decisions with diverse perspectives
- Has been used by IOM, CEPI, and WHO to define R&D priorities
- Endorsed by IVIR-AC for prioritization of health interventions and research
- Non-biased approach to value criteria to prioritize pathogens, it does not require pathogen knowledge to participate
- Results give insight into what people value
- Pathogen data can be updated as new information emerges





Nov 2022- May 2023

3. Conduct survey

- Surveys built using the 1000minds tool, populated with pathogens scores for each of the WHO regions, and translated into the major languages for each region
- Targeted dissemination by email to policy makers, health practitioners, and others from November 2022 to April 2023
- Participants carried out the survey without any pathogen names being present, they were asked to choose between hypothetical pathogens and values for their region.
- The tool calculated weights for criteria, multiplied by pathogen scores, to calculate the list of top 10 pathogens for each region.

Criteria weights

Pathogen ranks

Compile global priority list

May 2023 - December 2023

4. Identify pathogen priorities

- The Global priority pathogen list was created by bringing together all the pathogens that were identified by regions (17 pathogens).
- The Global List is robust: increasing the number of responses, dividing responses into clusters, and omitting selected criteria had no effect on its composition.
- Like IA2030, these pathogens are diverse
 - Reflect priorities of all regions
 - Affect people of all ages and all income levels

Global priority pathogens for new vaccine R&D (alphabetical)

Cytomegalovirus

Dengue

Extra-intestinal pathogenic E. coli (ExPEC)

Hepatitis C virus

HIV-1

Influenza

Klebsiella pneumoniae

Leishmania spp

Mycobacterium tuberculosis (TB)

Norovirus

Plasmodium falciparum

Respiratory syncytial virus (RSV)

Salmonella (non-typhoidal)

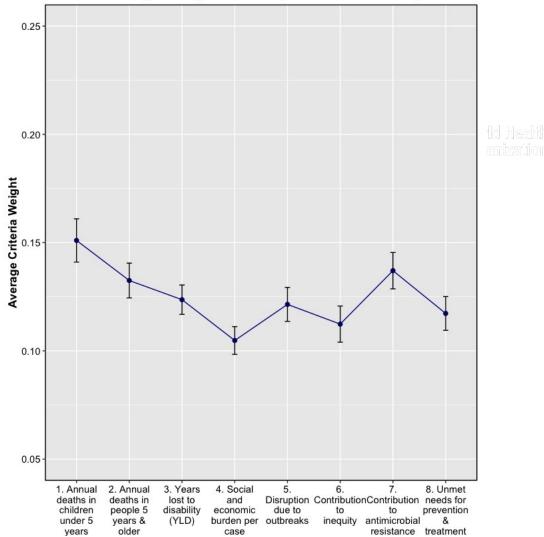
Shigella spp

Staphylococcus aureus

Streptococcus agalactiae (group B streptococcus)

Streptococcus pyogenes (group A streptococcus)

What do people value?


May 2023 - December 2023

4. Identify pathogen priorities

- The importance of criteria (weights) was evaluated across all regions.
- The 8 criteria have similar importance, they range from 11% to 15%
- The most important criteria were annual deaths in children under 5, contribution to AMR, and annual deaths in people 5 years and older

Criteria Weights by Cluster (1-Cluster Model)

Next steps for supporting regions in developing R&D agendas

IVB can support the development of regional R&D agendas

July 2023 onwards

4a. Support regional R&D agendas

Americas

European

2023

Presentation to regional team.

Presented to RITAG in December

African Region Region of the Americas South-East Asia Region European Region European Region Eastern Mediterranean Region Western Pacific Region

Eastern Mediterranean

 Socialization of approach but have not yet presented to regional team or RITAG

South-east Asia

Presentation to ITAG in September 2023

African

- Invitation to present at RITAG in June 2024
- Broader discussions regarding joint research agenda with interest from funder
- Socialization with Africa CDC

Western Pacific

 Socialization of approach but have not yet presented to regional team or ITAG

Proposal for IA2030 SP 7.2 M&E

2024 onwards

5. Monitor and update

Approach	Rationale
Compile global pathogen list from regional pathogen priorities	 Anchor on regional R&D priorities Consistent with IA2030 SP7 M&E guidance ^a
Identify key vaccine use cases for each pathogen	 Multiple vaccines may be needed to address a particular pathogen Most advanced use case may not be the most important one for public health (e.g. TB vaccines)
 Monitor progress at 2 points: Entry of candidates into Phase 3 trials WLA licensure and policy recommendation 	 First milestone reflects investment in large-scale efficacy trials Second milestone reflects success in vaccine R&D

Identify unmet "Use Cases" for each pathogen

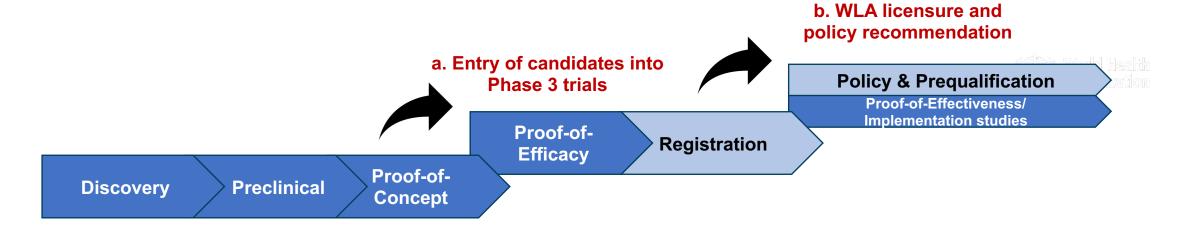
Definition

 The intended target population and outcome to be achieved by use of the vaccine or monoclonal antibody

Approx. 40 unmet use cases identified for pathogens on the global list

Approach

- Compiled from existing PPCs, TPPs, published literature, developer strategies
- Focus on unmet needs
- Reviewed by IVB experts and PDVAC members
- For M&E purposes; is not WHO guidance
- Living document, will evolve as R&D progresses


Examples

- Preventing dengue fever: vaccine for dengue naïve and immune individuals, to prevent dengue febrile illness induced by any dengue serotype
- Maternal group B streptococcus (GBS)
 vaccines: for maternal immunization during
 pregnancy to prevent GBS-related stillbirth and
 invasive GBS disease in neonates and young
 infants
- Pediatric respiratory syncytial virus (RSV)
 vaccines: for active immunization of infants, to
 prevent RSV disease in infants and young
 children

Monitor progress in meeting the use cases

Indicator	Definition
SP 7.2 a	% of use cases that have vaccines or monoclonal antibodies (mAbs) in Phase 3 trials
SP 7.2 b	% of use cases with licensed vaccines or mAbs that have supportive or permissive policy recommendations Use case: the intended target population and outcome to be achieved by use of the new vaccine or mAb Licensed: by a WHO-listed authority (WLA) of maturity level 3 or above, or transitional WLA Policy recommendations: by SAGE if within SAGE scope, by a national immunization technical advisory group if not in SAGE scope

What can stakeholders do to accelerate progress?

Discovery Preclinical Proof-of-Concept Proof-of-Efficacy Registration Proof-of-Implementation studies

Research

- Definition: Few candidates in development, substantial technical challenges
- Stakeholder actions needed: Develop tools to assess and improve feasibility, such as immunological assays, preclinical models, correlates of protection
- IVB/PDVAC role: Horizon scanning to evaluate progress in biological feasibility and other technical hurdles

Advance R&D

- Definition: Strong development pipeline with promising candidates
- Stakeholder actions needed: Facilitate translational research and accelerate candidates to clinical proof-of-concept, create consensus on pathway to regulatory approval
- IVB/PDVAC role: Provide guidance such as Preferred Product Characteristics (PPCs), Target Product Profiles (TPPs), technical R&D Roadmaps and Full Value of Vaccine Assessments (FVVA) to inform product development and clinical trial design

Prepare for Uptake

- Definition: Candidates have a high potential for licensure in the near future
- Stakeholder actions needed: Prepare for policy decisions and implementation
- IVB/PDVAC role: Provide guidance such as Evidence Considerations for Vaccine Policy (ECVP) and Implementation preparedness frameworks

- As a global health community we must focus our **efforts on developing vaccines** for the pathogens that most impact communities across the world.
- It is the right thing to do. And to do this right we need to work together with regions and countries. Too
 often decisions on the vaccines to prioritise have been taken only at a global level.
- The Priority Pathogen list is an example of how we can work to be country led which is a core principle of the Immunization Agenda 2030.
- Working with regions and countries has provided other valuable insights and opportunities that can support
 the vaccine development community: need for combination vaccines, improving existing vaccines, or
 enhancing regional research capacity.
- The overall priority pathogen list was created by bringing together all the pathogens that were identified by regions.
- The list is not intended to be restrictive, it is the result of a robust survey process with regions but should be read alongside other evidence and considerations e.g. feasibility of vaccine development, existing R&D strategies.

Consultation partners

Global NITAG Network

WHO regional offices, CEPI,

Mateusz Hasso-Agopsowicz

WHO R&D Blueprint team

Additional discussions in

African CDC

members

progress

WHO

Project team

Erin Sparrow

Biraitte Giersina

PAVMN, Africa

HITAP, Thailand

Strategic discussions and guidance

PDVAC Members and meeting participants

SAGE Members and meeting participants

SP7 Working Group members and meeting participants

WHO IVB and AFRO VPD Gavi policy team

SP7 Working Group Chairs KP Asante David Kaslow (until Dec 2022) o

Methodology advice

Rob Baltussen Paul Hansen Maarten Jansen Mark Jit c Lydia Kapiriri Stacey Knobler Colin Sanderson Yot Teerawattanon

Global Burden of Diseases data

Mohsen Naghavi Kelly Bienhoff Eve Wool

Translation review

Bader Al Ruwahi c Enric Jané Ibrahim Khalil Annie Mo Irina Morozova Ana Paula Szylovec Megan Williamson Dina Youssef

Review of pathogen scores

Winston Abara Muhammed Afolabi Ahmed Deemas Al Suwaidi Bill Hausdorff KP Asante Helena Hervius Askling Diana Rojas Alvarez Alan Barrett Lou Bourgeois

Chris Chadwick Kawser Chowdhury b

Hannah Clapham Alan Cross

Jeffrey Cannon

Ghassan Dhaibo Carolyn Deal

David Durrheim a Diana Faini

Pat Fast Peter Figueroa a, b

Amadou Garba Nebiat Gebreselassie

Birgitte Giersing

Sami Gottlieb

Michelle Groome Julie Jacobson Paul Kaye Ruth Karron c Sonali Kochhar a Kirsty Le Doare Jean C. Lee Katharine Looker Ben Lopman Niklas Luhmann Cal MacLennan Kim Mulholland a Harish Nair Kathleen Neuzil a Patricia Njuguna Helen Rees a, b **Andrew Steer** Cristiana Toscano a, b

Anh Wartel

Survey dissemination

Sunil Bahl Paula Barbosa Moredreck Chibi Siddhartha Datta Peter Figueroa a, b Adam Finn b Jessica Gu Quamrul Hasan Louise Henaff Benido Impouma Gagandeep Kang b, c Shaowei Li c Ziad Memish b Chris Morgan Nicaise Ndembi Marc Perut

Helen Rees a, b

Kamel Senouci

Ole Wichmann b

Yoshihiro Takashima

and many others at

Daniel Salas

Rajinder Suri

regional and country levels

Bridges to Development

Angela Hwang Ísis Umbelino Alan Brooks Anastasia Pantelias Maria Dreher

Maria-Graciela Hollm-Delgado

a current or former SAGE Member

PDVAC: WHO Product Development Vaccines Advisory Committee, SAGE: WHO Strategic Advisory Group of Experts on Immunization

b RITAG or NITAG member

c current or former PDVAC member

Thank You

Backup

Who "owns" these priorities?	These are global priorities under Immunization Agenda 2030 (IA2030), a global strategy to leave no-one behind. They were developed according to IA2030 core principles of "People-centred, partnership-based, data-guided and country-owned" WHO led the identification of these priorities, based on the perspectives of experts at the country and regional levels, and with input from global experts in vaccine R&D			
How do these priorities differ from previous prioritization efforts? What about other important research and R&D areas?	Previous prioritization efforts relied heavily on the opinions of pathogen experts In contrast, these priorities are based on regional surveys of policy makers and health practitioners. The surveys were 'pathogen agnostic', and captured how stakeholders in each region value 8 different criteria for prioritization These criteria addressed deaths, disability, burden per case, inequity, outbreaks,			
	contribution to antimicrobial resistance, and unmet needs for prevention and treatment			
	Priorities in other areas, such as combination vaccines, improved administration technologies, and implementation research are critically important but outside the scope of this project			
	They are being addressed through other projects to consider needs and align stakeholders around shared strategies			

How does a	pathogen get
on a Top 10	list?

Out of over 150 potential pathogens, the prioritization focused on 27 endemic pathogens with candidates in clinical development, for human use. (Epidemic pathogens are being prioritized separately.) Regional stakeholders can suggest additional pathogens to include in the prioritization

Regional values for 8 criteria for prioritization were applied to the latest regional evidence for those 27 pathogens to arrive at regional Top 10 lists

Are you ranking the pathogens?

Which is #1?

We are not ranking these pathogens. Many pathogens on the list appeared on the survey for multiple regions, indicating that these are common; others featured on only 1 or 2 regional lists, however, and each of these pathogens is crucially important somewhere

Are these the priorities for each region?

While these lists were based on regional surveys, the regional priorities are being set and are owned by regional entities. WHO will work as needed with stakeholders in each region to inform their priority-setting processes and R&D agendas

Don't we already have
vaccines for some of these
pathogens?

Yes, but for those pathogens the current vaccines do not meet the needs of particular target populations. For example, we still need TB vaccines for adults and adolescents, and dengue vaccines for dengue-naïve individuals. For that reason, we have included those pathogens in this prioritization exercise

Other pathogens merit attention, why are they not on this list?

Because this list is of priority endemic pathogens for <u>new</u> vaccine R&D, important pathogens that have vaccines in routine use, such as measles and rotavirus, are not included

Emerging infectious diseases (EIDs) are not included because they require different criteria for prioritization. The R&D Blueprint project is currently setting priorities for vaccine R&D for EIDs

Are pathogens not on this list unimportant?

Will WHO stop supporting R&D for other pathogens?

This list is meant to inform stakeholder strategies, especially for pathogens where the need is less widely recognized or where R&D is particularly challenging

Vaccines are an incredibly powerful tool for public health, and new vaccines are needed for many pathogens not on this list

Given its focus on equity and vulnerable populations, WHO will continue to enable vaccine R&D and access for many pathogens not on this list, particularly those that afflict low- and middle-income countries

Where does the Global List come from?	The pathogens on the regional Top 10 lists together make up the Global List
	en de la companya de
How does the Global	This list complements previously defined priorities by providing regional, evidence-driven perspectives
List relate to previously defined priorities?	While many of the pathogens on the list, such as HIV and TB, are longstanding global priorities, other pathogens on the list, such as <i>Leishmania</i> and cytomegalovirus, have garnered less attention
Does this set the agenda for WHO?	This list will be monitored for IA2030. WHO's immunization department will support the development of vaccines on this list for which there is a public health need in low- and middle-income countries
How does the global list relate to Gavi's Vaccine Investment Strategy (VIS) short list?	Gavi's VIS and this project differ in scope and in purpose. Gavi's VIS focuses on vaccines with expected licensure by 2030 and sets priorities for Gavi investment. This Global List includes pathogens with vaccines in earlier stages of R&D, to inform R&D stakeholder strategies and IA2030 monitoring
Are these priorities static or a "living document"? How will they be updated?	The Global List of priority endemic pathogens for new vaccine R&D is a living document and can be updated as the context and evidence evolve
	We anticipate that the biennial progress reviews will consider whether an update is warranted. Updates would be made using the same method used to generate the original list

So what?

What should I do with this list?

What will you do with this list?

IA2030 will use this Global List in monitoring progress in vaccine Research & Development (R&D) between now and 2030. It's intended to measure progress of vaccine R&D in general

This list is meant to inform strategies for the many stakeholders involved in new vaccine R&D, from research to product development to policy making

Specific actions would depend on the context for each stakeholder

For example, WHO will focus on advancing vaccines against pathogens that primarily afflict low- and middle-income countries. For many of these pathogens, WHO has led the development of Vaccine Value Profiles that summarize the current state of vaccine R&D, as well as other guidance documents such as Preferred Product Characteristics

Specific actions also depend on the current R&D landscape for the pathogen. Some have candidates in latestage clinical trials while others only have candidates early in development.

Existing feasibility assessments

Key resources for scoring using the VVP framework

Vaccines to tackle drug resistant infections: an evaluation of R&D opportunities

The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline

Vaccine Value Profiles (VVPs)

- 2018 report by BCG and Wellcome ("BCG/WT")^a
- Assessed the potential of vaccines against antimicrobialresistant (AMR) pathogens
- Combination of literature review, expert interviews, and modeling

- 2023 pipeline review by Frost et al.^b
- Pathogen and vaccine experts reviewed analysis and scoring
- Detailed scores by PATH, epidemiologists at the London School of Hygiene and Tropical Medicine (LSHTM), and WHO obtained from study team

- Series of review articles for upcoming Vaccine supplement
- Authored by leading subject matter experts for each pathogen
- Lessons of COVID-19 factored into analysis

BCG/WT: Vaccines for AMR report.

Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, Beyer P. The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 2023 Feb; 4(2):e113-e125. doi: 10.1016/S2666-5247(22)00303-2. Epub 2022 Dec 14. PMID: 36528040; PMCID: PMC9892012.

Why focus on endemic pathogens?

Epidemic threats require deep pathogen expertise and different criteria

WHO R&D Blueprint for Epidemics

Targeting research on diseases of greatest epidemic and pandemic threat

With the aim of strengthening global preparedness and response of any future epidemics and pandemics, the R&D Blueprint continues with its mandate to accelerate research on diseases threats before they emerge and to shorten the timeline in developing safe and effective curative and preventive medical countermeasures (diagnostics, treatments and vaccines) – a mandate endorsed by Member States during the 68th WHA.

In order to focus research efforts, an official WHO list of priority pathogens of epidemic and pandemic potential is generated and published based on an independent, open and multidisciplinary prioritization process, using rigorous and transparent methods.

The last prioritization exercise was conducted in 2018. WHO has recently launched a global scientific process to update the list.

The prioritization exercise will draw on the lessons from COVID-19 and ensure that trust, equity and access for those at highest risk is central to future R&D efforts. It will adopt a viral family approach to identify representative viruses (or prototypes) within a viral family as a pathfinder in generating science, evidence and filling knowledge gaps that may then be applicable to other viruses of threat in the same family. In recent years there has been growing support for this approach as it offers a framework to fast-track research and encourages research efforts on entire classes of viruses (e.g. flaviviruses), instead of just individual strains (e.g. zika virus), thus improving the capability to respond to unforeseen strains, zoonotic viruses (an animal virus that could jump to humans) and the potential threat of a Disease X.

To support this effort the R&D Blueprint will convene 20-25 viral family groups of experts to independently review the science and to shortlist viruses of concern. A bacterial group will be added to ensure this effort considers the risks of naturally occurring bacterial threats. These groups will represent a knowledge pool of over 300 international and independent experts and generate in a first phase of work, a shortlist of priority viral families, prototype viruses and bacteria, and Disease X recommendations to be carried forward for further prioritization. During a second phase of work, the shortlist will undergo a deeper review, considering both scientific and public health criteria (public health impact, health equity, economic and societal impact). An independent Prioritization Advisory Committee (PAC) will be established to conduct the final prioritization following a multi-criteria decision analysis (MCDA) approach.

The revised list is expected to be publicly release in the first half of 2023 and will guide targeted efforts by the R&D Blueprint, together with the global scientific community, to develop global R&D roadmaps for each priority pathogens and to develop Target Product Profiles (TPPs) that will guide developers on the ideal attributes of the medical countermeasures.

- R&D Blueprint is identifying priority and prototype pathogens from 26 viral families
- Blueprint priorities will inform R&D of countermeasures, including vaccines, diagnostics and treatments
- Deep pathogen expertise needed in microbiology of severe diseases, clinical management of severe infections, epidemiology and evolutionary biology, and animal health
- Criteria for prioritization must consider <u>potential</u> risk and impact, rather than current burden and impact

https://www.who.int/teams/blueprint/who-r-and-d-blueprint-for-epidemics, https://www.who.int/news-room/articles-detail/open-call-for-experts-to-serve-on-time-limited-viral-family-working-groups, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6106429/bin/17-1427-Techapp-s2.pdf

Top 10 pathogens in each region

African (N=55)	Americas (N=45)	E. Med. (N=38)	European (N=26)	SE Asian (N=44)	W. Pacific (N=65)	Global survey ^a
ТВ	HIV-1	ТВ	Staph aureus	ТВ	ТВ	ТВ
P falciparum (malaria)	Staph aureus	Staph aureus	ТВ	HIV-1	Staph aureus	HIV-1
HIV-1	Klebsiella pneumoniae	Klebsiella pneumoniae	HIV-1	Klebsiella pneumoniae	HIV-1	P falciparum (malaria)
Klebsiella pneumoniae	ExPEC	HIV-1	ExPEC	Staph aureus	GAS	Staph aureus
Staph aureus	ТВ	Leishmania	Klebsiella pneumoniae	GAS	Klebsiella pneumoniae	Klebsiella pneumoniae
Shigella	GAS	ExPEC	GAS	ExPEC	ExPEC	ExPEC
Non-typhoidal Salmonella (NTS)	Shigella	Shigella	Cytomegalo- virus	RSV	Influenza	GAS
Extra-intestinal pathogenic E coli (ExPEC)	RSV	Hepatitis C virus	RSV	Shigella	RSV	Shigella
Respiratory syncytial virus (RSV)	Influenza	GAS	Hepatitis C virus	Hepatitis C virus	Hepatitis C virus	RSV
Group B streptococcus	Hepatitis C virus	Norovirus	Shigella	Dengue virus	Cytomegalo- virus	NTS

Pathogen Updates

- Removed P aeruginosa from scope due to lack of pipeline activity
- Added Dengue virus to scope due to unmet need for vaccines for dengue-naïve individuals (scores under review)
- Updated scores for RSV (Unmet needs for prevention and treatment) due to new product licensures

Effects on Top 10 lists

- Additions highlighted in red
- Total of 17 pathogens across the 6 regions

Key

Top 10 in all regions

Top 10 in some regions

Addition to Top 10