# Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases



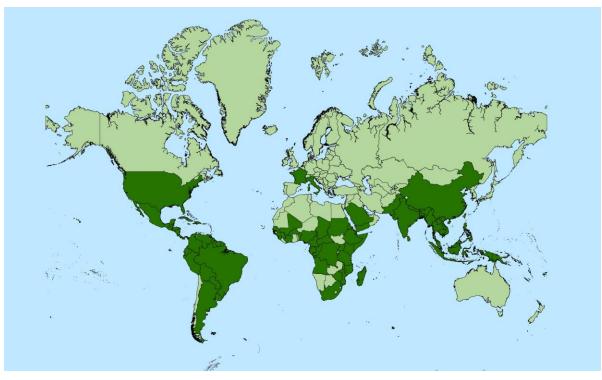
# Chikungunya: Epidemiology and Risk Groups

Susan Hills, MBBS, MTH
Arboviral Diseases Branch
Centers for Disease Control and Prevention
Fort Collins, Colorado, USA

Product Development for Vaccines Advisory Committee Meeting

December 12, 2023

# **Chikungunya virus**


- Alphavirus
- Primarily transmitted by Aedes aegypti and Aedes albopictus mosquitoes
  - Lay eggs in containers that hold water
- Uncommon modes of transmission
  - Intrauterine and intrapartum
  - Bloodborne
  - Laboratory exposure



## Distribution and disease patterns

- Virus transmission in tropical and subtropical regions of world
- Sporadic cases and periodic outbreaks
- Outbreaks can be explosive and result in high attack rates

#### Countries with current or past transmission of chikungunya virus



https://www.cdc.gov/chikungunya/geo/index.html

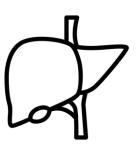
### Clinical features of chikungunya

- High fever and arthralgia which is often severe and debilitating
- Multiple joints involved
  - Arthralgia most common in hands and feet
- No anti-viral treatment available








## Rare complications

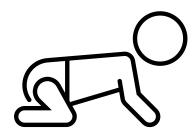


Neurologic disease



Myocarditis




Hepatitis



Acute renal disease



Ocular disease



Severe bullous lesions



Mortality rate low 0.02% - 0.8%

## Chronic arthralgia after chikungunya

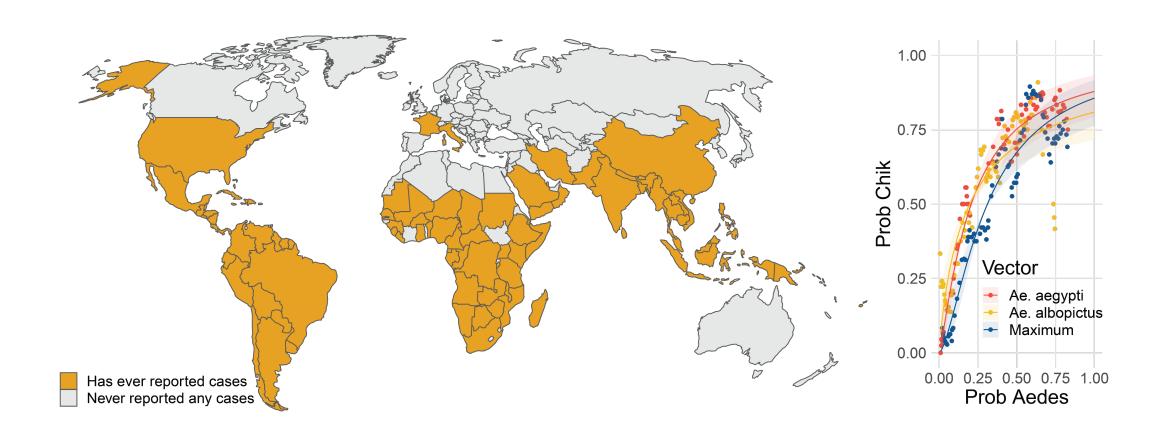
- Multiple studies but variability in methodologies, symptoms assessed,
   definitions and ascertainment of symptoms, characteristics of patient in cohorts
- Recent meta-analysis\*estimated
  - About one-half have arthralgia at 3 months
  - About one-third have arthralgia at 12 months
- However, proportions likely somewhat overestimate rates of chronic arthralgia in patients overall as studies
  - Almost exclusively included persons who sought health care (i.e., likely more severe disease)
  - Do not account for background rate of arthralgia in population

### Risk factors for severe disease

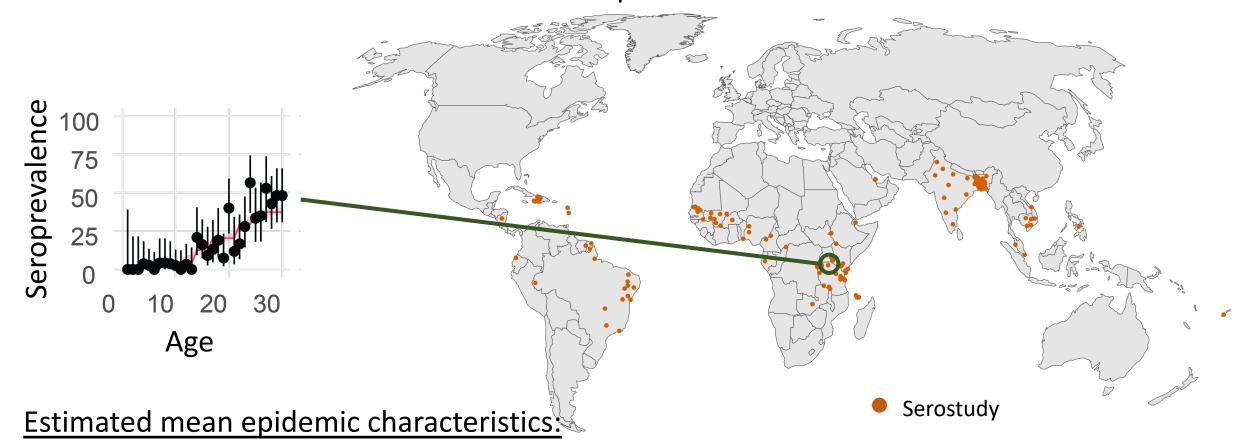
- Age >65 years
- Age <1 year</li>
- Underlying medical conditions (e.g., diabetes, heart disease, hypertension)
- Infection in neonate following intrapartum transmission



# Thank you


The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

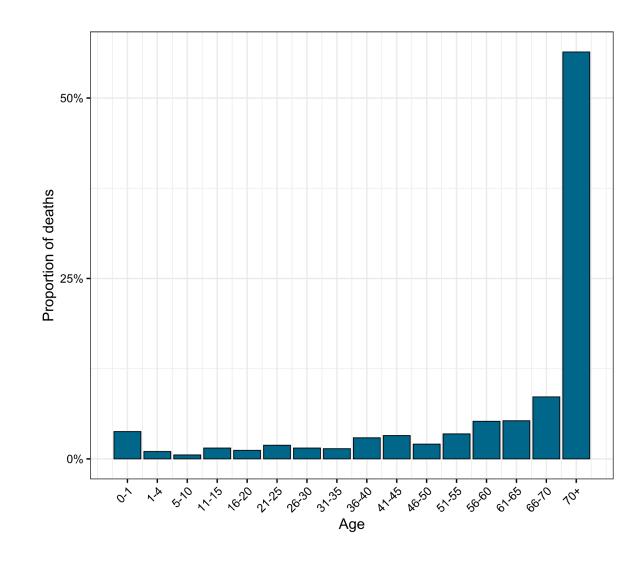
Susan Hills (shills@cdc.gov)




### Underlying global epidemiology of chikungunya

- Most tropical/sub-tropical countries have experienced CHIKV transmission
- Strong relationship between history of transmission with vector presence



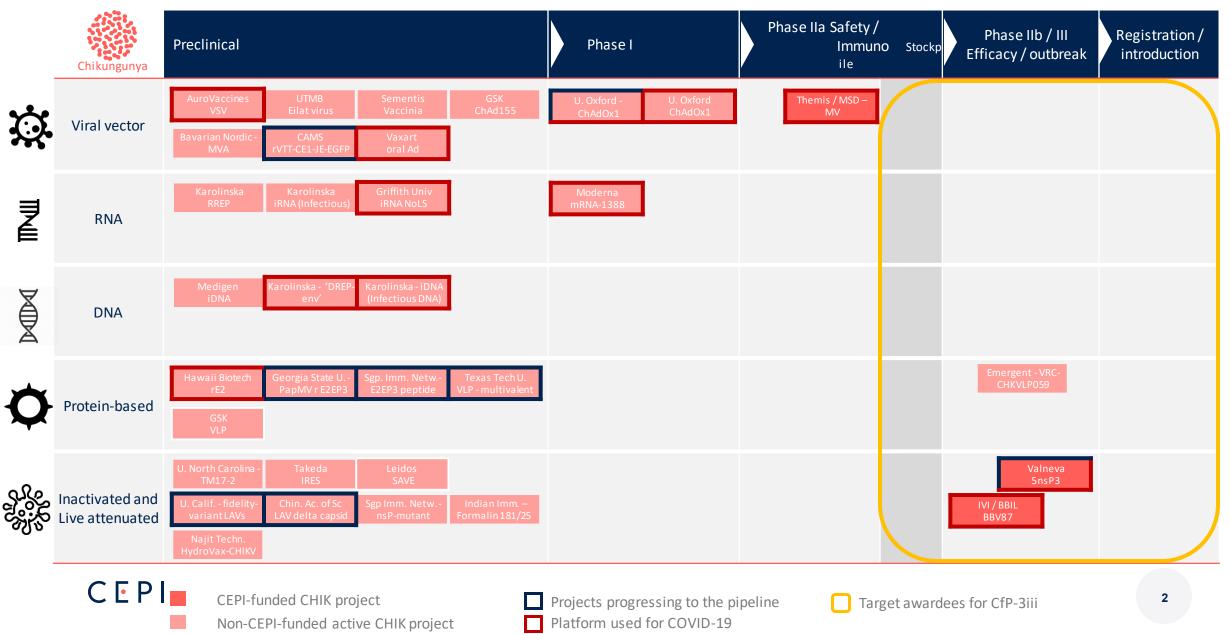

- For vaccine strategy, need to understand frequency and size of outbreaks
- Outside South America, many outbreaks are missed
- Cannot rely on case reporting
- Serostudies combined with models can help



- One outbreak every ~8 years
- ~10% of population infected per outbreak

### Vaccine use strategies

- Two main approaches:
  - Reactive campaigns using stockpiles
  - Regular immunization
- Optimal strategy depends on:
  - Underlying epidemiology
  - Vaccine characteristics VE, infection vs disease blocking, duration of protection
  - Target population especially by age
  - Ability to detect and respond to outbreaks




CEPI

## CEPI's Chikungunya Vaccine Development Program

Timothy Endy MD, MPH
CEPI CHIKV Program Leader

#### Chikungunya vaccine development landscape



Sensitivity: CEPI Internal

#### CEPI 1.0 VS CEPI 2.0 CHIK grant objectives

#### CHIKV CfP-3i EC grant:

• For CHIKV vaccines, to support the rapid progression of the most advanced clinical CHIKV vaccine candidates through mid-stage and late-stage clinical development, and to support activities enabling future efficacy testing, including identification of correlates of protection and their validation that can facilitate future regulatory approval.

<u>CHIKV CfP-3iii EC grant</u>: The focus of this grant submission is on assessing the long-term safety, durability of protection and facilitating access and registration of CHIKV vaccines in CHIKV endemic countries to potentially include technology transfer. The specific aims and objectives are:

- 1. Supporting developers with a CHIKV vaccine program that is currently in Phase 3 studies and near national regulatory licensure or licensed by a national regulatory agency to support the execution of extended Phase 3 human clinical trials and/or Phase 4 studies to establish long-term safety of the vaccine, durability of a surrogate marker of protection based on neutralizing antibody titers and /or vaccine effectiveness by utilizing surveillance for virologically confirmed disease.
- 2. Supporting developers with a CHIKV vaccine program that is in Phase 3 human clinical trials with near licensure by a national regulatory agency or with licensure by a national regulatory agency to support additional human clinical trials (Phase 2 studies) in special subgroup populations to include age deescalation into pediatric populations, pregnant women and those who are immunocompromised.

# **CEPI-funded Portfolio Snapshot**

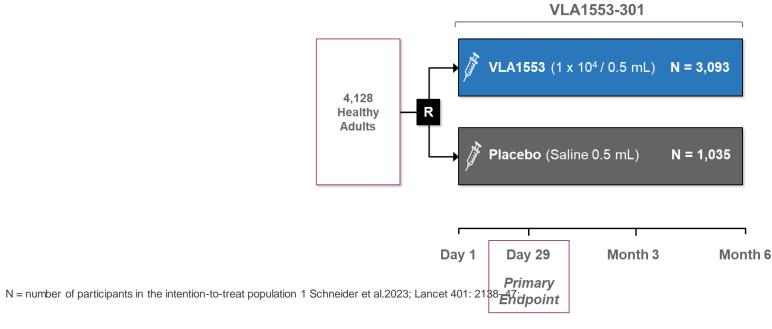
|                         | <b>V</b> valneva         | International Vaccine Institute  BHARAT BIOTECH |  |
|-------------------------|--------------------------|-------------------------------------------------|--|
| Chikungunya             | Valneva                  | IVI / Bharat                                    |  |
| Development phase       | Phase IV                 | Phase II/III                                    |  |
| Platform                | Live Attenuated          | Inactivated + Alum                              |  |
| Antigen                 | CHIKV 5nsP3              | Whole virion BBV87                              |  |
| Dose schedule           | 1                        | 2                                               |  |
| Route of administration | IM                       | IM                                              |  |
| Clinical trial sites    | USA, BRA                 | IND, THA, COL, COR, GUT, PAN                    |  |
| Regulatory pathway      | FDA, EMA, ANVISA, WHO PQ | DCGI, INVIMA, Thai FDA, WHO PQ                  |  |

# **New Portfolio in Due Diligence**

|                   | Valneva  INSTITUTO BUTANTAN A serviço da vida | International Vaccine Institute  BHARAT  BIOTECH | BAVARIAN NORDIC                             |
|-------------------|-----------------------------------------------|--------------------------------------------------|---------------------------------------------|
| Platform          | LAV (VLA 1555/1553) La<br>Reunion ECSA strain | IAV (BBV87) Indian ECSA<br>strain                | CHIKV VLP WA stain                          |
| Development Phase | Ph 4                                          | Ph 3 (Pending start)                             | Ph 3 completed                              |
| Phase 4 plan      | Effectiveness & Post approval safety          | Effectiveness RCT                                | Ph 3b/4 efficacy study                      |
| Expansion study   | Ph 2 dose range + Ph 3<br>PIP                 | Ph 2b HIV+ cohort<br>Ph 2b in pregnant<br>women  | Ph 3 PIP Ph 3 Adolescent study Ph 3 Infants |
| Licensure route   | US licensed, EMA,<br>ANVISA                   | DCGI                                             | US, EMA                                     |

# Valneva's live-attenuated, single-dose chikungunya virus vaccine candidate (VLA1553)

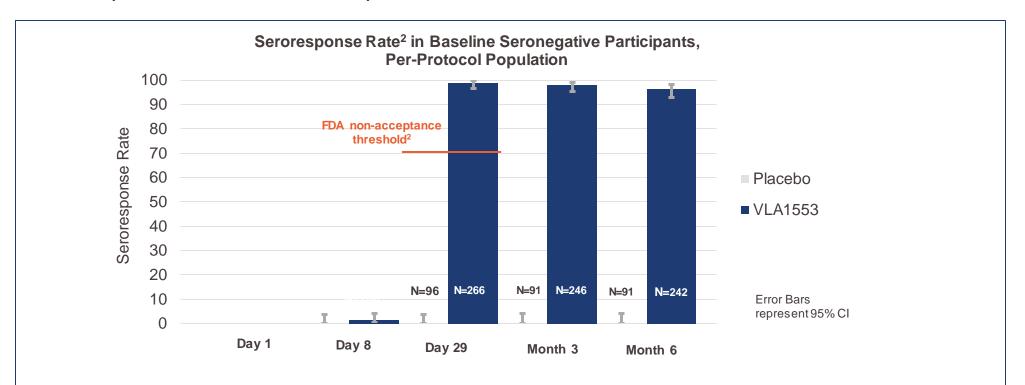
Phase 3 Results and Antibody Persistence Data Slide deck provided by Valneva for external use




#### **Pivotal Clinical Trial VLA1553-301**



#### Provided safety and immunogenicity data as the basis for licensure

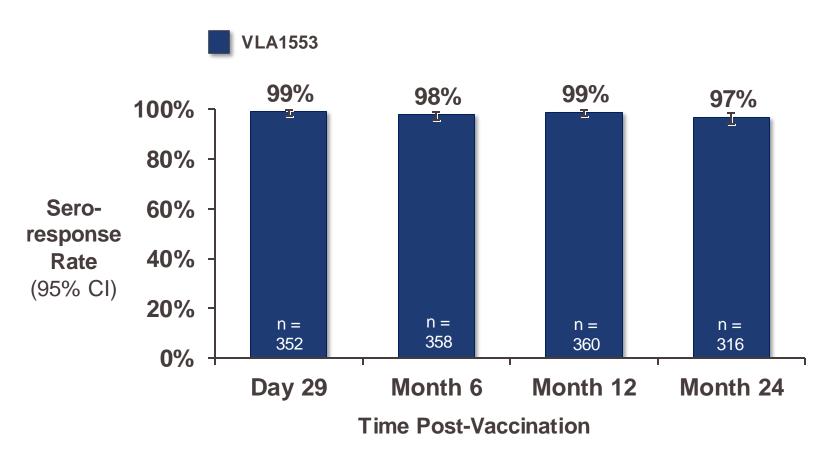

- Multicenter, randomized, placebo-controlled double-blind Phase 3<sup>1</sup> clinical trial in adults conducted in US
- 4,128 healthy adults, ≥ 18 years old, were randomized 3:1 to receive a single vaccination of VLA1553 or a saline control
- Primary endpoint: rate of participants achieving seroresponse (or CHIKV-specific neutralizing antibody titers
   ≥ 150) after single vaccination of VLA1553, in a subset



#### **VLA1553-301 Primary Endpoint met**



#### Seroresponse<sup>1</sup> in 99% of Participants



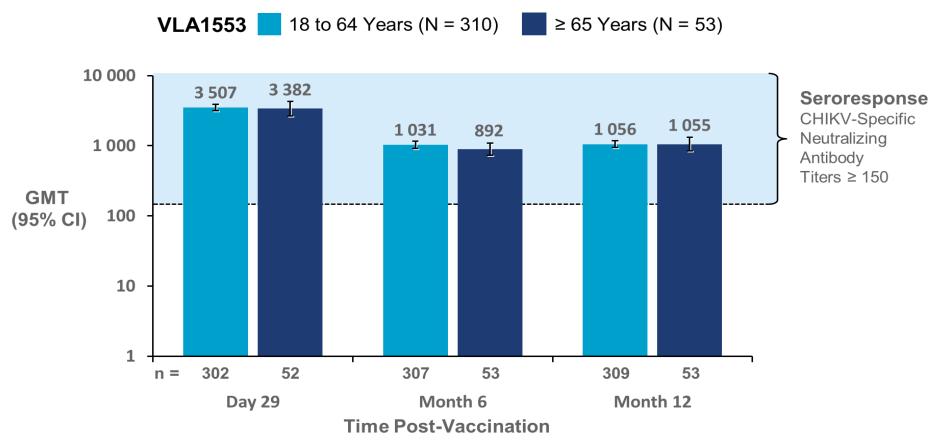

- Per-Protocol population: 362 / 462 participants from immunogenicity set
- Day 29 Seroresponse rate (SRR):
  - 98.9% (263/266, 95% CI: 96.7- 99.8) vs placebo 0% (0/96, 95%CI 0.0 3.8)
- High SRR was maintained after six months at 96.3% (233/242, 95% CI: 93.1 98.3)

#### VLA1553-303: seroresponse in 97% of Participants Retained After 24 Months<sup>1,2</sup>



Data support the anticipated long-term durability of the immune response after a single dose




Seroresponse = CHIKV-specific neutralizing antibody titers ≥ 150

<sup>1</sup> Buerger et at, presented at CISTM 2023; 2 Valneva Press Release Dec 4, 2023 <a href="https://valneva.com/press-release/valneva-reports-positive-24-month-antibody-persistence-data-for-its-single-shot-chikungunya-vaccine-ixchiq/">https://valneva.com/press-release/valneva-reports-positive-24-month-antibody-persistence-data-for-its-single-shot-chikungunya-vaccine-ixchiq/</a>

#### VLA1553-303: Equal level of neutralizing antibodies in both age groups<sup>1</sup>



In older adults aged ≥ 65 years, antibody persistence was similar to younger



Whole Sample Population

Seroresponse = CHIKV-specific neutralizing antibody titers ≥ 150 1 Buerger et at, presented at CISTM 2023 Pathways: Options when Clinical Efficacy Trials are Challenging – Chikungunya Virus Vaccines



#### Robin Levis, PhD

Deputy Director, Division of Viral Products, OVRR/CBER
U.S. Food and Drug Administration

December 13, 2023

# Getting to Licensure: Pathways and Requirements



| Requirements for Licensure                                                                                                        | Traditional Approval                                 | Accelerated Approval                                                     | Animal Rule                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safe: "relative freedom from harmful effect"                                                                                      | <b>✓</b>                                             | <b>√</b>                                                                 | <b>√</b>                                                                                                                                                |
| Potent: "specific ability of product to effect a given result" (effectiveness)"                                                   | Endpoint that directly demonstrates clinical benefit | Surrogate endpoint that is reasonably likely to predict clinical benefit | Efficacy demonstrated in animal model(s), with requirements to assure that animal studies establish reasonable likelihood of clinical benefit in humans |
| Pure: "relative freedom from extraneous matter in the finished product"                                                           | <b>✓</b>                                             | <b>√</b>                                                                 | <b>√</b>                                                                                                                                                |
| Manufactured: consistently according to Current Good Manufacturing Practices (cGMPs) to ensure continued safety and effectiveness | <b>✓</b>                                             | <b>√</b>                                                                 | <b>√</b>                                                                                                                                                |

### **Accelerated Approval**





| Qualifying criteria                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A drug that treats a <b>serious condition</b> AND                                                                                                                                                                                                                                                                                    | A disease or condition associated with morbidity that has<br>substantial impact on day-to-day functioning, survival, or<br>likelihood that the disease, if left untreated, will progress<br>from a less severe condition to a more serious one |  |
| Generally provides a meaningful advantage over available therapies AND                                                                                                                                                                                                                                                               | <ul> <li>Is approved or licensed in the United States for the same indication being considered for the new drug and</li> <li>Is relevant to current U.S. standard of care for the indication</li> </ul>                                        |  |
| Demonstrates an effect on a surrogate endpoint that is reasonably likely to predict clinical benefit or on a clinical endpoint that can be measured earlier than irreversible morbidity or mortality (IMM) that is reasonably likely to predict an effect on IMM or other clinical benefit (i.e., an intermediate clinical endpoint) | <ul> <li>For vaccines, can be an immune marker that is not<br/>scientifically established, but is reasonably likely, to<br/>predict protection against disease</li> </ul>                                                                      |  |

# Clinical Disease Endpoint Efficacy Trials for Chikungunya Vaccines – Traditional Approval



- In the absence of a scientifically well-established immune marker that predicts protection against CHIKV disease, traditional approval would require a clinical disease endpoint efficacy trial
  - A randomized controlled, double blind, trial to demonstrate vaccine effectiveness against virologically-confirmed CHIKV infection and disease
- Feasibility of being able to conduct a field efficacy trial is low
  - Disease outbreaks are irregular and unpredictable
  - Require an established infrastructure to conduct the trial in an outbreak setting
    - Difficult to pre-position this infrastructure
    - Timing of study implementation is critical

## Accelerated Approval for Chikungunya Vaccines



- Approaches to identify immune markers reasonable likely to predict protection against virologically confirmed disease:
  - Sero-epidemiological studies
  - Cynomolgus Macaque Model
  - Passive transfer of vaccinee sera to NHP

### Sero-Epidemiological Studies



- Sero-epidemiological studies were proposed as an approach to identify an immune marker reasonably likely to predict protection
- Prospective, sero-epidemiological studies in CHIKV endemic regions could employ active surveillance and serologic/virologic testing methods to identify cases of CHIKV infection, with correlation of baseline antibody titers (e.g., CHIKVneutralizing antibodies) at enrollment with infection and disease outcomes during the surveillance period
- Considerations for sero-epidemiologic studies include:
  - Reliability of surveillance and testing methods to identify clinical cases that reflect established features of CHIKV disease and epidemiology
  - Subject recruitment methods to avoid potential selection bias
  - Proper validation of serologic assays to quantify antibody titers
  - Measured immune marker may correlate with, but not be responsible for protection against CHIKV disease

# Cynomolgus Macaque Model of CHIKV Infection and Disease



- A NHP model of CHIKV infection and disease has been proposed to identify an immune marker reasonably likely to predict protection in humans
- A cynomolgus macaque model recapitulates several features of human CHIKV disease including fever, rash, viremia (tissue dissemination), and abnormal blood chemistry
- Considerations regarding the relevance of this model to human disease include:
  - Differences in disease features during subacute and chronic phase observed between cynomolgus macaques and humans
  - A challenge dose of CHIKV representative of natural infection in humans (10<sup>3</sup> PFU) induces fever, which may be accompanied by rash, but no overt signs of arthritis
  - Higher challenge doses (>10<sup>7</sup> PFU) of CHIKV induce inflammation and effusion in joints and results in meningoencephalitis and death in cynomolgus macaques

# FDA

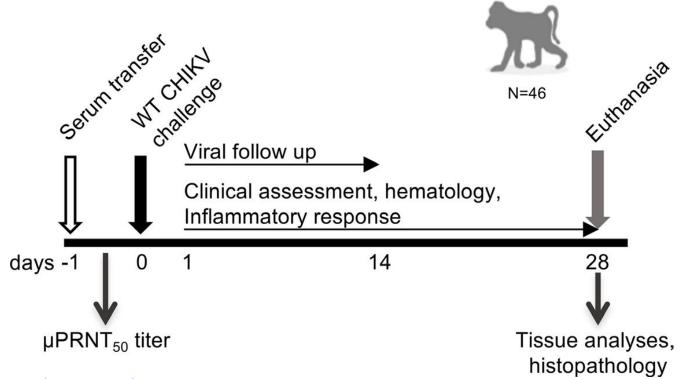
# Passive Transfer of Human Antibodies to Non-Human Primates (NHPs)

- Passive transfer of pooled human sera or purified IgG from vaccinees into NHPs prior to CHIKV challenge to identify an immune marker reasonably likely to predict protection
- Considerations regarding the utility of passive transfer studies in NHPs include:
  - Will an immune marker derived using pooled human serum or purified IgGs (prepared from pooled serum) accurately predict protection from CHIKV disease in humans?
  - Are there clinically meaningful differences in antibody quality that may influence protective capacity between a certain titer in a vaccinated human and the same titer resulting from dilution during passive transfer?
- What would be the optimal timing for collecting post-vaccination human serum to be used in passive transfer studies?
- Will other factors in human serum, besides antibodies (e.g., cytokines), contribute to protection against CHIKV infection and disease?





- Considerations for clinical studies to assess effectiveness of CHIKV vaccines:
  - Feasibility of randomized, controlled clinical disease endpoint efficacy trials
  - Role of sero-epidemiologic data in identifying an immune marker reasonably likely to predict vaccine effectiveness
- Utility of the non-human primate (NHP) challenge model to assess effectiveness of CHIKV vaccines, including:
  - Effectiveness endpoints, such as viremia, arthritis-related endpoints or other essential endpoints
  - Role of passively transferred sera or purified IgG from vaccinated humans in identifying an immune marker reasonably likely to predict vaccine effectiveness


# Review and Licensure of Chikungunya Virus Vaccines



- Agreement reached at VRBPAC related to acceptable licensure pathway.
- Determined that FDA will review NHP data supporting proposed correlates of protection to be used as a primary end point in Phase 3 trials.
  - These data will be used on a case-by-case basis to support accelerated approval of Chikungunya vaccines
  - Data will be generated using the passive transfer of vaccinee sera in an NHP challenge model
  - Each sponsor performed independent studies to define an endpoint that is reasonably likely to predict clinical benefit
- FDA will also review post approval study protocols for the confirmatory study to assess effectiveness of Chikungunya vaccines



### Design of Valneva Passive Transfer Study



https://doi.org/10.1172/jci.insight.160173

# Valneva Accelerated BLA Approval: 09 –November – 2023



"Effective this date, we have approved your BLA for Chikungunya Vaccine, Live, under accelerated approval pursuant to section 506(c) of the Federal Food, Drug, and Cosmetic Act (FDCA) and the regulations for accelerated approval, 21 CFR 601.41. You are hereby authorized to introduce or deliver for introduction into interstate commerce, Chikungunya Vaccine, Live under your existing Department of Health and Human Services U.S. License No. 1909. Chikungunya Vaccine, Live is indicated for active immunization for the prevention of disease caused by Chikungunya virus in individuals 18 years of age and older who are at increased risk of exposure to Chikungunya virus."

# Post-Marketing Requirements to Confirm Efficacy (1)



Test-negative observational study to assess effectiveness of IXCHIQ vaccination in the prevention of symptomatic, laboratory confirmed chikungunya after a single vaccination with IXCHIQ in the adolescent and adult population (12 years of age and older) in endemic areas of Brazil.

- Final Protocol Submission: May 31, 2025
- Study Implementation Readiness Verification Submission: June 30, 2025
- Study Initiation: March 1, 2026
- Study/Trial Completion: March 1, 2028
- Final Report Submission: September 30, 2028

# Post-Marketing Requirements to Confirm Efficacy (2)



Pragmatic randomized controlled trial to assess the effectiveness and safety of IXCHIQ vaccination in the prevention of symptomatic, laboratory confirmed Chikungunya after a single vaccination with IXCHIQ in adults in an endemic country.

- Final Protocol Submission: September 30, 2024
- Study Implementation Readiness Verification Submission: June 30, 2025
- Study Initiation: October 1, 2025
- Study/Trial Completion: July 31, 2029
- Final Report Submission: December 31, 2029



### Post-Marketing Pediatric Requirements

- Deferred pediatric study under PREA (VLA1553-321) to evaluate safety and immunogenicity of IXCHIQ in adolescents 12 to <18 years of age.</li>
  - Final Report Submission: November 30, 2024
- Deferred pediatric study under PREA (VLA1553-221) to evaluate dose-finding safety and immunogenicity of IXCHIQ in children 1 to <12 years of age.</li>
  - Final Report Submission: January 31, 2026
- Deferred pediatric study under PREA (VLA1553-322) to evaluate safety and immunogenicity of IXCHIQ in children 1 to <12 years of age.</li>
  - Final Report Submission: June 30, 2027
- Deferred pediatric study under PREA (VLA1553-222) to evaluate dose-finding safety and immunogenicity of IXCHIQ in neonates and infants <1 year of age.</li>
  - Final Report Submission: February 28, 2029
- Deferred pediatric study (VLA1553-323) to evaluate safety and immunogenicity of IXCHIQ in neonates and infants <1 year of age.</li>
  - Final Report Submission: October 31, 2030

