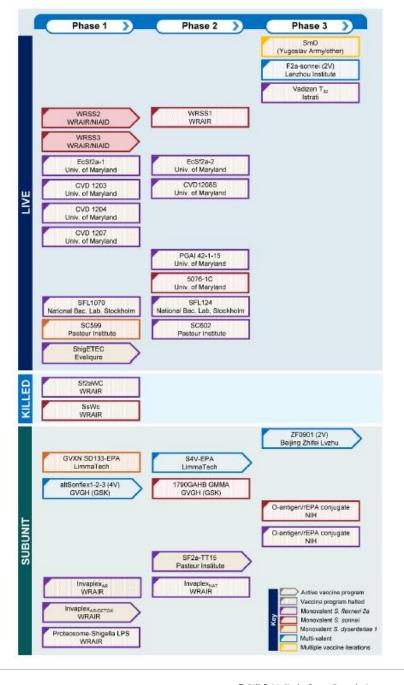
BILL & MELINDA GATES foundation

Status of *Shigella* vaccine pipeline and product development considerations


Cal MacLennan
WHO PDVAC Meeting

December 12, 2023

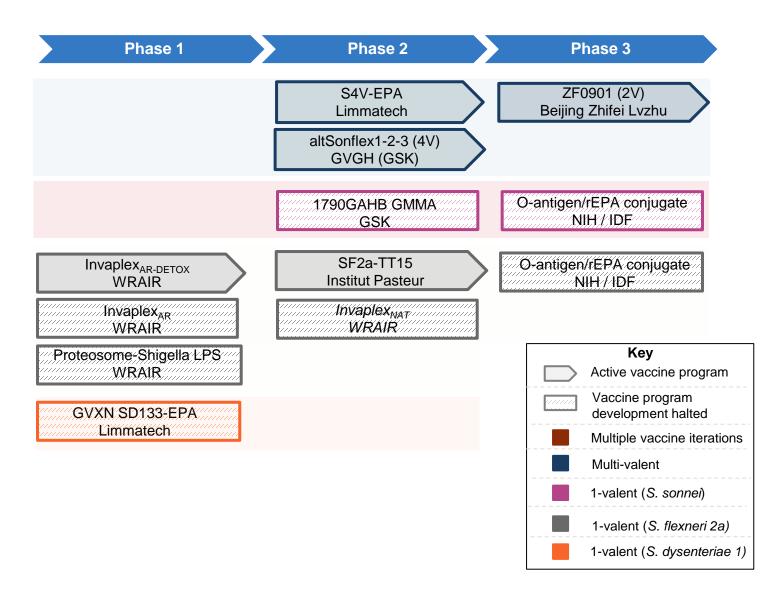
Shigella vaccine pipeline

- 100 years of Shigella vaccine development
- Proof of concept from NIH glycoconjugate vaccine in Israel 1997
- Graveyard of reactogenic/poorly immunogenic LAV candidates
- New emphasis on O-antigen-based parenteral vaccines

(The Shigella Vaccines Pipeline Vaccines 2022)

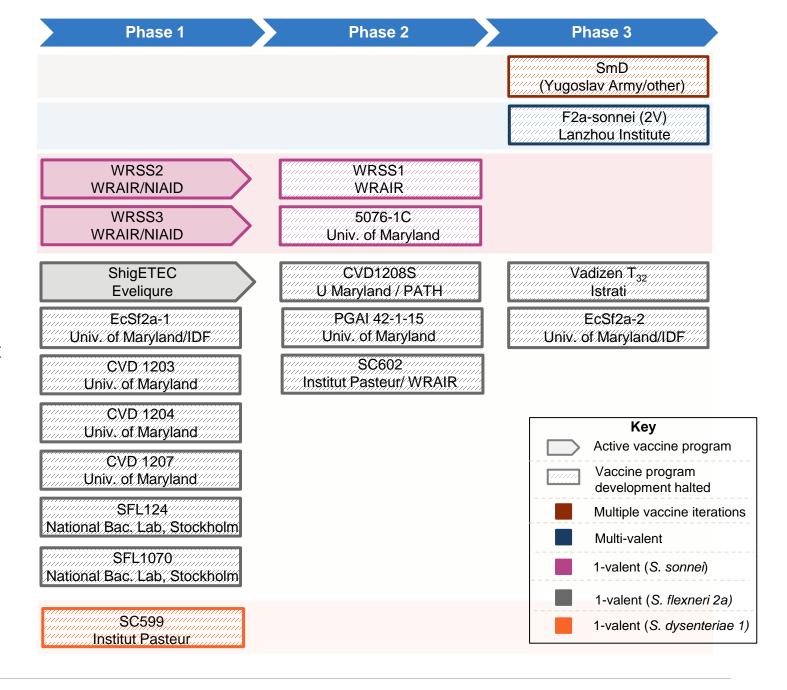
WHO preferred product characteristics (PPC)

- **Indication** Prevention of moderate-to-severe diarrhoea (MSD) due to *Shigella* infection
- Target Population Infants from 6 months and children up to 36 months of age
- Schedule 1–2 dose primary series during first 12 months of life +/booster for protective immunity through to 5 years
- **Efficacy** 60% (point estimate) or more against moderate-to-severe *Shigella* diarrhoea caused by vaccine serotypes
- **Duration** For 24 months following last vaccine dose in the primary series. Protection up to 5 years desirable
- Route Oral or injectable (IM, ID or SC), using standard volumes of administration (WHO, 2021)



WHO PREFERRED PRODUCT CHARACTERISTICS FOR Vaccines against Shigella

Subunit vaccines


- Proof of principle from NIH S. sonnei Oantigen/rEPA conjugate vaccine
- Limited progress over next 20 years
- Resurgence in subunit approach over past five years
- Multiple candidates in clinical trials

Live attenuated vaccines

CONFIDENTIAL

- Builds on efficacy from historic but discontinued Yugoslav 'SmD' and Istrati 'Vadizen T₃₂' vaccines
- Perennial challenge of balancing acceptable reactogenicity with sufficient immunogenicity
- Additional challenge of poor response among children in low- and middleincome settings
- Development of most candidates halted

Opportunity of Shigella-containing combination vaccines

Conference report

Challenges and opportunities in developing a *Shigella*-containing combination vaccine for children in low- and middle-income countries: Report of an expert convening

Mark S. Riddle ^{a,*}, A. Louis Bourgeois ^b, Allison Clifford ^b, Suhi Jeon ^c, Birgitte K. Giersing ^d, Mark Jit ^e, Marta Tufet Bayona ^f, Jared Ovitt ^a, William P. Hausdorff ^{b,g}

(Vaccine 2023; 41:2634-2644)

- Measles + Shigella +/- adjuvant
- Meningococcal A + Shigella
- TCV + Shigella

- to address increasing vaccine delivery challenges
- to bring additional vaccines into crowded schedules
- challenges of compatibility

Last updated: December 18, 2023 © Bill & Melinda Gates Foundation | © Bill & Melinda Gates Foundation

Controlled human infection models in *Shigella* clinical development

How can controlled human infection models accelerate clinical development and policy pathways for vaccines against *Shigella*?

Birgitte K. Giersing a,*, Chad K. Porter b, Karen Kotloff c, Pieter Neels d, Alejandro Cravioto e, Calman A. MacLennan f

(Vaccine 2019; 37: 4778-4783)

- CHIM studies could have a role as a basis for, and/or supportive of licensure
- CHIM studies have a potential role in establishing correlates of protection
- CHIM studies are not conducted in the pediatric global health population
- Need to consider various product development scenarios

CONFIDENTIAL
© Bill & Melinda Gates Foundation

Clinical & regulatory development strategies

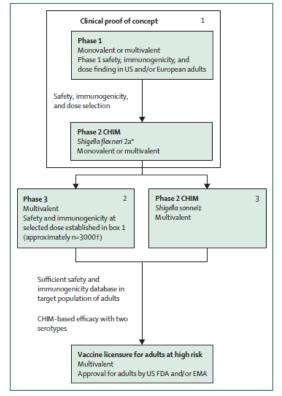


Figure 1: Potential regulatory approval pathway for a Shigella vaccine intended for use in adult populations in high-income countries who are exposed to high-risk settings

The CHIM studies are interchangeable and could be combined to assess efficacy in the same protocol. CHIM-controlled human infection model. FDA-Food and Drug Administration. EMA=European Medicines Agency. *The study might assess more than one dose. †Minimal safety database. ‡Assume proof of concept against both 5 | flexner | 2a and 5 sonnei will be needed.

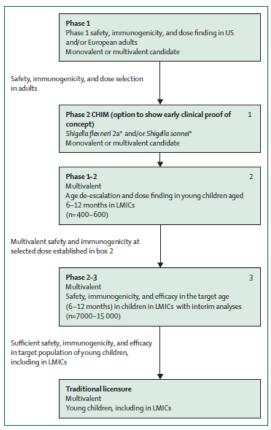
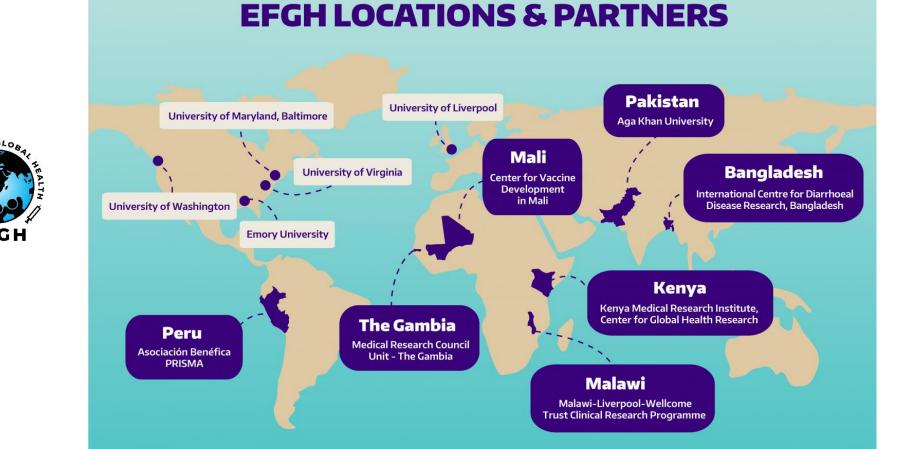


Figure 2: Potential regulatory approval pathway based on a traditional efficacy-based pathway for a Shigella vaccine intended to support broad use (based on a global policy recommendation), in infants and children younger than 5 years in LMICs

LMIC=low-income or middle-income country. *The study might assess more than one dose.

Clinical and regulatory development strategies for Shigella vaccines intended for children younger than 5 years in low-income and middle-income countries

Birgitte K Giersing, Richard Isbrucker, David C Kaslow, Marco Cavaleri, Norman Baylor, Diadié Maiga, Patricia B Pavlinac, Mark S Riddle, Gaqandeep Kana, Calman A MacLennan



(Lancet Global Health; 2023; 11: e1819 - 26)

Potential regulatory approval pathways for Shigella vaccines:

- CHIM-based regulatory approval strategy in adults, for travellers and military personnel
- Traditional efficacy-based regulatory approval route for use in infants and young children in LMICs
- Fully integrated Shigella vaccine regulatory approval pathway
- Conditional Marketing Authorisation to expedite the approval time of Shigella vaccines for use in infants and young children in non-Gavi countries

EFGH Consortium

Funded by
BILL & MELINDA
GATES foundation

EFGH Goals

- Gather key data that will inform pivotal Shigella vaccine efficacy trial study design in representative target countries using a standardized methodology
- Ready potential pediatric clinical trial sites to quickly implement

 Shigella vaccine efficacy trials, accelerating time to vaccine availability
 to children

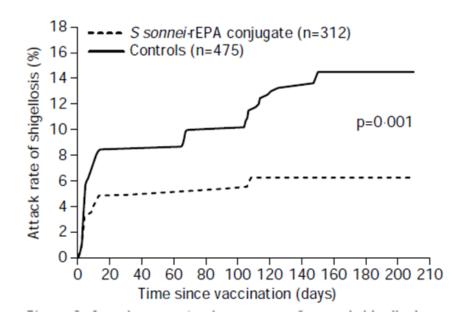
https://depts.washington.edu/efgh/

EFGH Overview		
Study Design	Facility-based hybrid surveillance (for <i>Shigella</i> incidence estimation) & prospective cohort (for sequelae)	
Case definition	Children aged 6-35 months with new & acute medically-attended diarrhea (MAD) / dysentery presenting to EFGH health facilities	
Follow-up period	3 months (visits at 4 weeks & 3 months)	
Outcomes	Etiology-specific incidence, diarrhea duration, diarrhea recurrence, hospitalization, anthropometry, death, cost	
Surveillance period	24 months	
Population enumeration	Random household sampling to estimate population denominator	
Health-care utilization estimation	Health-care utilization surveys	
Microbiologic confirmation	Culture + qPCR	
Sample size	1400 children/ country site	
Timeline	Planning: 2021, Recruitment: 2022-2024, Study completion/ reporting: 2024	

Phase 3 efficacy with *Shigella sonnei* conjugate & correlates of protection

- 26 years ago a 1st generation NIH 'lattice-type' S. sonnei conjugate vaccine gave 74% efficacy among Israeli military.
- Protection strongly associated with serum IgG antibody response to LPS O-antigen, supporting this modality as a correlate of protection...
- Issue: many years later, the vaccine failed to protect children <3 years. Loss of protection closely associated with decreased induction of LPS O-antigen IgG
- Hypothesis that a 2nd generation vaccine that induces higher levels of IgG to O-antigen will protect young children

Double-blind vaccine-controlled randomised efficacy trial of an investigational *Shigella sonnei* conjugate vaccine in young adults


Dani Cohen, Shai Ashkenazi, Manfred S Green, Michael Gdalevich, Guy Robin, Raphael Slepon, Miri Yavzori, Nadav Orr, Colin Block, Isaac Ashkenazi, Joshua Shemer, David N Taylor, Thomas L Hale, Jerald C Sadoff, Danka Pavliakova, Rachel Schneerson, John B Robbins

(Lancet 1997; 349: 155-9)

Age-related efficacy of *Shigella* O-specific polysaccharide conjugates in 1–4-year-old Israeli children

Justen H. Passwell^{a,1}, Shai Ashkenzi^b, Yonit Banet-Levi^a, Reut Ramon-Saraf^a, Nahid Farzam^a, Liat Lerner-Geva^c, Hadas Even-Nir^a, Baruch Yerushalmi^d, Chiayung Chu^e, Joseph Shiloach^f, John B. Robbins^e, Rachel Schneerson^{e,*}, The Israeli Shigella Study Group²

(Vaccine 2010; 28: 2231-2235)

© Bill & Melinda Gates Foundation

Confirmation of correlate of Protection against Shigellosis

- Serum IgG to O-antigen of S. sonnei subsequently confirmed as a correlate of protection in adults following analyses on historic clinical trial samples and better correlated with protection than SBA (Cohen et al, 2019)
- Evidence of serum IgG to S. flexneri 2a being a correlate of protection against shigellosis caused by S. flexneri 2a from human challenge study data, and better correlated with protection than SBA (Talaat et al, 2021)
- Threshold protective levels of serum IgG to S. sonnei Oantigen determined to be >1:1600 TAU (Tel Aviv University)
 ELISA Units (Cohen et al, 2022)

REVIEW 3 OPEN ACCESS OPEN ACCE

Serum IgG antibodies to *Shigella* lipopolysaccharide antigens – a correlate of protection against shigellosis

Dani Cohen^a, Shiri Meron-Sudai^a, Anya Bialik^a, Valeria Asato^a, Sophy Goren^a, Ortal Ariel-Cohen^a, Arava Reizis^a, Amit Hochberg^b, and Shai Ashkenazi^c

(Human Vacc Immunotherap 2019; 15: 1401-1408)

Research paper

Human challenge study with a Shigella bioconjugate vaccine: Analyses of clinical efficacy and correlate of protection

Kawsar R. Talaat^{a,1,*}, Cristina Alaimo^{b,1}, Patricia Martin^b, A. Louis Bourgeois^{a,e}, Anita M. Dreyer^b, Robert W. Kaminski^c, Chad K. Porter^d, Subhra Chakraborty^a, Kristen A. Clarkson^c, Jessica Brubaker^a, Daniel Elwood^a, Rahel Frölich^b, Barbara DeNearing^a, Hailey Weerts^c, Brittany L. Feijoo^a, Jane Halpern^a, David Sack^a, Mark S. Riddle^d, Veronica Gambillara Fonck^b

(EBioMedicine 2021; 66: 103310)

Original article

Threshold protective levels of serum IgG to *Shigella* lipopolysaccharide: re-analysis of *Shigella* vaccine trials data

Dani Cohen ^{1,*}, Shai Ashkenazi ^{2,3}, Rachel Schneerson ^{4,†}, Nahid Farzam ⁵, Anya Bialik ¹, Shiri Meron-Sudai ¹, Valeria Asato ¹, Sophy Goren ¹, Tomer Ziv Baran ¹, Khitam Muhsen ¹, Peter B. Gilbert ^{6,7}, Calman A. MacLennan ^{8,9}

(Clin Microbiol & Infection 2022; 29: 366-71)

Correlate of Protection against Shigellosis - Utility

Critical Needs in Advancing *Shigella* Vaccines for Global Health

Calman A. MacLennan, 1.0 Kawsar R. Talaat, Robert W. Kaminski, Dani Cohen, Mark S. Riddle, and Birgitte K. Giersing

¹Bill & Melinda Gates Foundation, London, United Kingdom, ²Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA, ³Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA, ⁴School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, ⁵University of Nevada, Reno School of Medicine, Reno, Nevada, USA, ⁶World Health Organization, Geneva, Switzerland

(J Infect Dis 2021)

- Need for:
 - An international standard serum and harmonized enzyme-linked immunosorbent assay (Rob Kaminski presentation)
 - demonstration of field efficacy in young children in low- and middle-income countries
 - early engagement with regulators and policy makers.
- If a Phase 3 efficacy study can confirm correlate of protection status of serum IgG to *S. sonnei* and *S. flexneri* 2a O-antigen, it might be possible to license further vaccines on the basis of IgG antibody levels without the need for additional long & expensive field trials

Summary

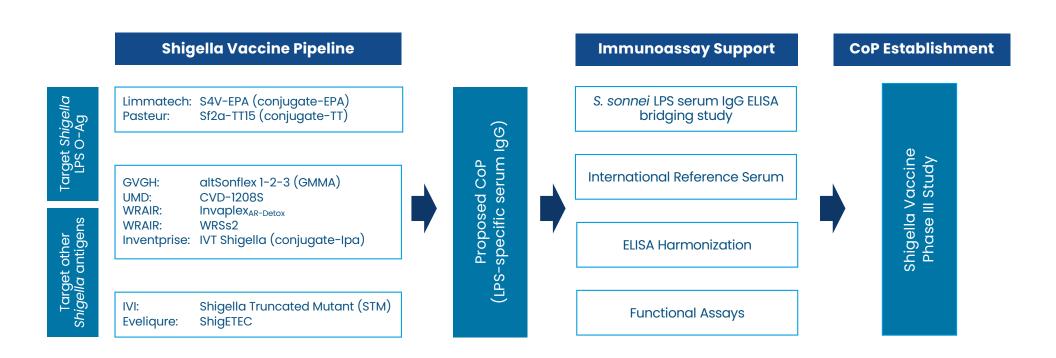
- Multiple O-antigen-based subunit vaccines in clinical trials with different technological approaches
- Evaluation for immunogenicity in descending-age/dose-finding studies LMIC children
- Quadrivalent format appears necessary for sufficient serotype coverage
- Preparations for Phase 3 field efficacy studies
- Advanced assay harmonisation & standardisation work
- Subsequent vaccines could potentially be licensed on basis of immune non-inferiority
- Opportunity for combination vaccines

Question to PDVAC

If correlate of protection status can be established in the pediatric global health target population (LMIC infants) from a Phase 3 efficacy study of a first *Shigella* vaccine, could PDVAC opine on the broad concept of an accelerated pathway to licensure for subsequent *Shigella* vaccines based on immunobridging and safety?

Updates on:

Shigella Immunoassay Activities


WHO Regulatory Workshop

Robert Kaminski, Ph.D. WHO Consultant

Role of Immunoassays: Supporting Shigella Vaccine Licensure

Immunoassays: Shigella sonnei LPS Bridging Assays

CMI

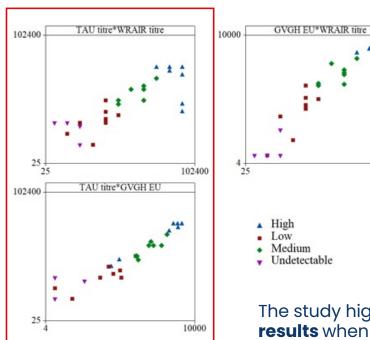
AND INFECTIO

Original article

Threshold protective levels of serum IgG to Shigella lipopolysaccharide: re-analysis of Shigella vaccine trials data

Dani Cohen ^{1, *}, Shai Ashkenazi ^{2, 3}, Rachel Schneerson ^{4, 1}, Nahid Farzam ⁵, Anya Bialik ¹, Shiri Meron-Sudai ¹, Valeria Asato ¹, Sophy Goren ¹, Tomer Ziv Baran ¹, Khitam Muhsen ¹, Peter B. Gilbert ^{6, 7}, Calman A. MacLennan ^{8, 9}

- Anti-Shigella LPS serum IgG is proposed to be a correlate of protection against shigellosis
- Threshold of 1600 expressed as an endpoint titre (using TAU ELISA protocol)


Objective: Use a panel of representative samples (n = 32) to determine the "1600 equivalent" in two other laboratories to facilitate analysis and interpretation of responses to vaccination in clinical trial samples analysed in other laboratories/methods

WRAIR – ELISA with results expressed as **endpoint titres**

GVGH – ELISA with results expressed in ELISA Units (**EU**) relative to an internal reference serum

Immunoassays: Shigella sonnei LPS Bridging Assays

102400

Using the fitted equation from the regression analyses to convert a **TAU titre of 1600** (i.e. 3.204 log₁₀ titre) to GVGH EU gives a result of **396 EU** (i.e. 2.597 log₁₀ EU) and a 95% confidence interval for this estimate of **315 – 497 EU**.

Further values calculated using the fitted equations from the regression analyses are shown below:

TAU titre	Estimated GVGH EU (95% CI)	Estimated WRAIR <u>titre</u> (95% CI)
800	161 (124 – 211)	1053 (703 – 1577)
1600	396 (315 – 497)	2550 (1811 – 3590)

The study highlights the **existing challenges with comparing and interpreting results** when different ELISA methods and/or reporting measures are used – this is the **primary driver for developing an International Standard reference serum**

International Standard Serum for Shigella immunoassays

The development of a well characterised, stable reference serum is intended for standardisation of shigella immunoassays

Within laboratories

Standard is used for calibration of assay Helps control for variation between plates / operators / days / studies etc.

Between laboratories

Standard is used for calibration of different assays
Provided the standard is **commutable** with patient samples, it will **improve agreement** in measurement obtained across different
labs/methods

- Ultimate objective is to **harmonise the measurement** of anti-Shigella antibody responses across studies and laboratories.
- Well harmonised assays will facilitate **comparison of data from vaccine trials where the analysis is done in different labs/methods**, helping to identify common criteria/thresholds that are **predictive of protection** against disease

Shigella LPS ELISA Harmonization Activities

The overall project goal is to harmonize an ELISA procedure to measure anti-Shigella LPS serum antibody responses across global laboratories to support Shigella vaccine development

Project Objectives:

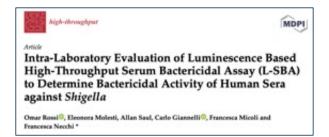
- · Identify Key Assay Reagents
- Identify Key Assay Steps
- Investigate robustness and ruggedness of the ELISA
- Establish a Standard Operating Procedure (SOP) for use by the global community

Assay Step	Test Parameter	Conditions with acceptable outcomes
	Plate Type	Immulon 1B round Immulon 2 flat
Plate Coating	Coating Buffer pH	рН 9.8 рН 7.4
January 3	Temperature Incubation Time	4°C-overnight 4°C - 3 hrs 37°C - 1 hr Stable for 7 days at 4°C
Blocking & Primary Antibody	Buffer Type	2% Casein
Socondary Antibody	Incubation Time	60 ± 5 min
Secondary Antibody	Plate Washing	5 automated washes (375 ul each @ 418 ul/sec)
Substrate	pNPP Format Stop Solution Incubation Time	Powder pNPP - 30 ± 2 min - no stop Powder pNPP - 30 ± 2 min - stopping with 3M NaOH

- **ELISA protocol is transferable** between laboratories supporting future tech transfer efforts, and, together with use of a well characterised reference serum, can help **support harmonisation** of the measurement of *S. flexneri* 2a IgG responses
- Work continues for LPS ELISAs from other Shigella serotypes (S. sonnei, S. flexneri 3a, 6 and 1b)

Functional Immunoassays

Functional assays can improve our understanding of the role of **protective antibodies** in blocking infection and disease


Several functional assays have been developed:

- Serum bactericidal assays (SBA)
- Opsonophagocytic Killing Assays (OPKA)
- Adhesion/Invasion inhibition assays

Serum bactericidal antibody titers have been associated with protection from shigellosis in controlled human infection models (CHIMs) and phase IIb vaccination/challenge studies.

Two SBA protocols have been successfully transferred to commercial research organizations to potentially support future clinical studies.

WHO Regulatory Workshop on Clinical Pathways for Shigella vaccines

WHO Regulatory Workshop on Clinical Pathways for Shigella vaccines intended for use in children in low-and middle-income countries

WHO: Regulators, Clinicians, Policy makers, Laboratory SMEs, Donors, Vaccine manufacturers

WHAT: Two-day WHO Regulatory Workshop focused on clinical pathways for Shigella vaccines

WHERE: Nairobi, Kenya

WHEN: 20-21 March 2024

Workshop Objectives

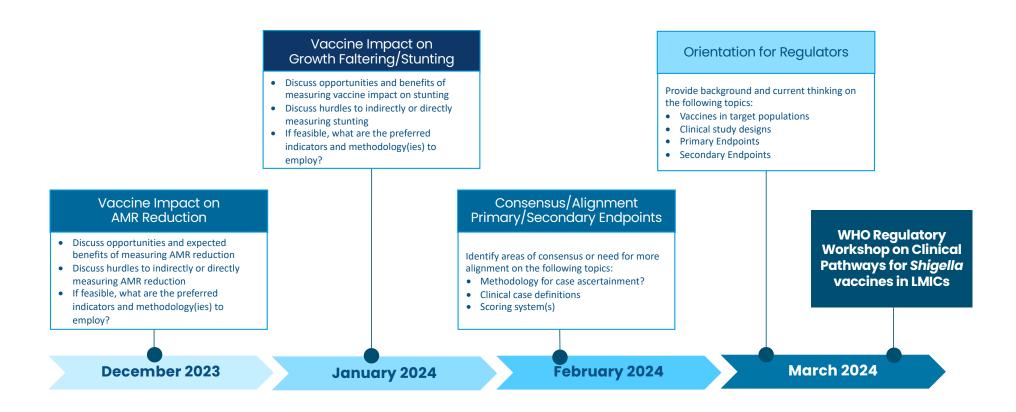
- Raise awareness of Shigella burden and vaccine development status with regulators, particularly those from countries in which the phase III study is expected to be conducted
- Review the current thinking, study design considerations and preparations for phase III field efficacy studies in high burden countries, and discuss with regulators through a series of round tables
- additional discussion/alignment to inform phase III study design in line with regulatory expectations.

Key questions to address and build consensus

- o Do the primary endpoints presented meet regulatory expectations?
- What is the anticipated lower bound required to demonstrate a vaccine efficacy of 50% against prevention of disease?
- Do the case ascertainment methods and proposed severity scoring system align with regulatory expectations?
- Do the secondary endpoints (LSD, Hospitalization, Time to Treat) meet regulatory expectations?
- o Are the safety endpoints sufficient to support market authorization?
- Value of exploratory/research endpoints (vaccine impact on AMR reduction and growth faltering/stunting) to the regulatory community? To the policy community?
- How can efficacy data from traveler populations obtained in CHIM studies support market authorization for an indication in infant populations?

Workshop Expected Outcomes

- Improved engagement from regulators on Shigella vaccines, based on awareness of burden and public health need for a vaccine
- Clarity on areas of alignment regarding phase III study design and aspects that need further discussion with regulators
- Meeting report summarizing deliberations and recommendations for next steps



Global Distribution of Participants

WHO update to PDVAC

Preparation for Regulatory Meeting: Virtual Engagements

PDVAC Questions

- Does PDVAC consider the scope of the regulatory meeting and its objectives / intended outcomes to be sufficiently comprehensive? (please note: the draft meeting agenda is loaded in the background material)
- Can PDVAC opine on the importance of a Shigella vaccine demand assessment at this stage of development, particularly with the potential for a future combination vaccine?
- Would PDVAC support a separate, related WHO Workshop to engage regulators and policy makers on combination vaccine strategies, perhaps in the context of "Shigella + X" vaccines?