HPV vaccine
Session introduction and key questions

6 April 2022

Rakesh Aggarwal, SAGE Member
Chair, HPV Vaccine Working Group
WHO position on HPV vaccines (2017)

WHO recommends countries to implement HPV vaccination by vaccinating a routine targeted cohort of girls in the age range of 9-14 years and provide multi-age-cohort (MAC) vaccination at the introduction year (up to age 18)

- Target groups
 - Primary target group: Girls 9-14 years old
 - Secondary target group: Older girls (≥15 years), and males

- Vaccination schedule
 - Two doses: Girls 9-14 years old
 - Three doses: Girls ≥ 15 years, or immunocompromised

SAGE recommendations on HPV (Oct 2019)

• Countries should temporarily postpone implementation of boys, older age group (>15 years) and MAC HPV vaccination strategies until all countries have access to HPV vaccine. This will significantly relieve supply constraints in the short term and enable allocation of doses to high-burden countries currently planning to introduce this vaccine

Alternative strategies:

• To retain the disease impact of MACs, target an older cohort of girls (e.g. those who are 13 or 14 years old or in a higher school grade)

• To reduce vaccine supply needs, adopt a “1+1” schedule with an extended interval of 3-5 years between doses for younger girls (e.g. 9 or 10 years old or in a lower school grade)

Source: https://www.who.int/wer/2019/wer9447/en/
Evidence on single-dose HPV since 2019

• Since the SAGE meeting in 2019, evidence on single-dose HPV vaccine has been accumulating

• 2021: Publication of data from several studies implemented to definitively assess the potential for single-dose HPV vaccine as a routinely recommended schedule

• April 2021: Therefore, the SAGE HPV WG was reconvened to reassess the evidence on single-dose HPV vaccination strategy and to identify the remaining research needs
SAGE HPV WG composition: Members

- Rakesh Aggarwal (Chair) Jawaharlal Institute of Postgraduate Medical Education and Research, India
- Punnee Pitisuttithum (SAGE member), Mahidol University, Thailand
- Neerja Bhatla, All India Institute of Medical Sciences, India
- Silvia Franceschi, Centro di Riferimento Oncologico, Italy
- Eduardo L. Franco, McGill University, Canada
- Suzanne Garland, Murdoch Children’s Research Institute, Australia
- Lauri Markowitz, Centers for Disease Control and Prevention, USA
- Andrew J. Pollard, University of Oxford, UK
- You-Lin Qiao, Peking Union Medical College, China
- Helen Rees, Wits Reproductive Health and HIV Institute, South Africa
- John Schiller, National Cancer Institute, USA
- Margaret Stanley, University of Cambridge, UK
SAGE HPV WG composition: Secretariat

- WHO (Immunization, Vaccines and Biologicals)
 - Paul Bloem (HPV vaccine lead)
 - Tracey Goodman
 - Hiroki Akaba
 - Christoff Steffen
 - Joachim Hombach
 - Tania Cernuschi
 - Raymond Hutubessy

- WHO (Reproductive Health and Research)
 - Nathalie Broutet

- WHO (HIV, Hepatitis and STIs)
 - Shona Dalal

- WHO contractor
 - Julia Brotherton
Questions considered by the Working Group

1. What evidence gaps exist and what research is recommended to enable SAGE to make a universal one-dose HPV schedule recommendation?

2. Should an off-label, permissive one-dose HPV vaccine schedule be recommended for use
 - In multi-age cohort (MAC) catch-up?
 - In routine cohorts?
<table>
<thead>
<tr>
<th>Agenda</th>
<th>Presenter</th>
<th>Estimated time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session introduction and key questions</td>
<td>Rakesh Aggarwal, SAGE member</td>
<td>5</td>
</tr>
<tr>
<td>Update on progress of HPV vaccine introduction and coverage</td>
<td>Paul Bloem, WHO</td>
<td>8</td>
</tr>
<tr>
<td>Global market study on HPV vaccines, 2022 update</td>
<td>Tania Cernuschi, WHO</td>
<td>10</td>
</tr>
<tr>
<td>Evidence from clinical trials to inform decision-making on reduced HPV vaccination schedules</td>
<td>Lauri Markovitz, WG member</td>
<td>12</td>
</tr>
<tr>
<td>Systematic review of evidence on single HPV vaccination</td>
<td>Nicholas Henschke, Cochrane Response</td>
<td>10</td>
</tr>
<tr>
<td>Modelling evidence on the impact of 1-dose strategies</td>
<td>Marc Brisson, Laval University</td>
<td>10</td>
</tr>
<tr>
<td>Discussion and Q&A on evidence</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Conclusions and proposed recommendations of the SAGE Working Group</td>
<td>Rakesh Aggarwal, SAGE member</td>
<td>10</td>
</tr>
<tr>
<td>Discussion on recommendations</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>
Progress in HPV vaccine introduction & reaching the 2030 target of 90% coverage

an update

SAGE meeting

April 6, 2022

Paul Bloem
HPV vaccine strategy lead
WHO IVB Geneva
Global strategy to accelerate the elimination of cervical cancer

VISION: A world without cervical cancer

THRESHOLD: All countries to reach < 4 cases 100,000 women years

2030 CONTROL TARGETS

- **90%** of girls fully vaccinated with HPV vaccine by 15 years of age
- **70%** of women screened with a high precision test at 35 and 45 years of age
- **90%** of women identified with cervical disease receive treatment and care

HPV vaccination estimated to avert > 45M deaths over next 100 years

SDG 2030: Target 3.4 – 30% reduction in mortality from cervical cancer

SAGE meeting April 2022
Countries with HPV vaccine in the national immunization programme

Date of slide: 2022-28-3
Map production: Immunization Vaccines Biologicals (IVB), World Health Organization
Data Source: IVB database, 28 March 2022

2030 Target: 194 countries

- A. Yes: 117 (60%)
- B. Yes (Partial): 77 (40%)
- C. No
- Data not available
- Not applicable

Disclaimer:
The information presented and the designations used on this map do not imply the expression of any opinion or any endorsement of the state, territory, or area nor of its authorities, or concerning the border lines for which there may not yet be demarcation.
Trends in HPV vaccine introduction

![Annual # countries introducing HPV vaccine graph](chart)

Supply constraints

Girls

Boys

SAGE meeting April 2022
Return to historic trend level needed to reach Global Cervical Cancer Elimination Strategy 2030 Target

Number of member states with HPV vaccine programme

- Introduced
- CCEI target scenario
- Supply constraint and COVID scenario
- Past 5 years trend scenario

<table>
<thead>
<tr>
<th>Year</th>
<th>Introduced</th>
<th>CCEI target scenario</th>
<th>Supply constraint and COVID scenario</th>
<th>Past 5 years trend scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Global HPV Coverage remains low compared to childhood vaccines and other new vaccines.
Global HPV vaccine coverage decreased - for the first time - in 2020

HPV vaccine coverage was affected by COVID-19 pandemic and only 13% of girls are fully protected.

Currently less than third of the world’s population of girls 9–14 years of age live in countries that provide the HPV vaccine.

More countries now provide Male vaccination.

Over a third of all HPV programmes provide the vaccine to males.

*2020 non-reporting countries imputed using extrapolation from 2019 level with mean change by WHO region (15 July 2021)
Historically, high drop out rates for HPV vaccine

Global HPV vaccine drop-out rate in girls 10-14 yr

Dropout rate = \(\frac{\text{HPV}_1 - \text{HPV}_{\text{final}}}{\text{HPV}_1 \times 100} \)

- Girls Received only 1 dose
- Girls received 2 doses

<table>
<thead>
<tr>
<th>Year</th>
<th>Girls Received 2 doses</th>
<th>Girls Received 3 doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>8.2 m</td>
<td>18%</td>
</tr>
<tr>
<td>2011</td>
<td>3.0 m</td>
<td>27%</td>
</tr>
<tr>
<td>2012</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>2013</td>
<td>16%</td>
<td>24%</td>
</tr>
<tr>
<td>2014</td>
<td>20%</td>
<td>22%</td>
</tr>
<tr>
<td>2015</td>
<td>19%</td>
<td>33%</td>
</tr>
<tr>
<td>2016</td>
<td>20%</td>
<td>27%</td>
</tr>
<tr>
<td>2017</td>
<td>22%</td>
<td>27%</td>
</tr>
<tr>
<td>2018</td>
<td>27%</td>
<td>27%</td>
</tr>
<tr>
<td>2019</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>27%</td>
<td></td>
</tr>
</tbody>
</table>
WHO/UNICEF HPV vaccine coverage estimates, 2020

Mean HPVc: 57%

Mean HPVc: 36%

Mean HPVc: 38%

2020 global mean HPVc: 45%

Few countries reach 90% target

* Program interrupted

Source: WHO/UNICEF (2021)
Africa and Americas regions most strongly affected by COVID

Mean HPVc coverage* by WHO region

*Among countries with data for both years (Oct 2021)
Concluding observations

- HPV introduction rate slowed in recent years - affected by supply constraints & not on track for 2030 target.

- HPV vaccine coverage is suboptimal in most countries and high drop out indicate programmatic challenges.

- COVID affected programme coverage, particularly in UMIC & LMICs and recovery efforts urgently needed.

- COVID impact on L/MICs’ capacity to introduce HPV in coming years uncertain.
HPV Global Vaccine Market Study
2022 update

WHO SAGE Meeting – 6 April 2022
Tania Cernuschi – WHO/UHC-LC/IVB
Global Supply

Available Supply for Commercialization
A supplier base in fast evolution

<table>
<thead>
<tr>
<th>**** Product in clinical development based on tech transfer</th>
<th>Immunobridging study is sufficient for licensure in India / CIN2 efficacy is required in China</th>
<th>WHO / UN views</th>
</tr>
</thead>
</table>

Marketed Products
- **Merck**
 - Gardasil 4v & 9v
 - Licensed globally / WHO prequalified
 - Adjuvant: Alum
 - Sched.: 2 doses (9-14) or 3 doses (15+)
 - Pres.: 1 dose vial (PQ) / PFS (non PQ)
- **GSK**
 - Cervarix 2v
 - Licensed globally / WHO prequalified
 - Adjuvant: AS04
 - Sched.: 2 doses (9-14) or 3 doses (15+)
 - Pres.: 1,2 dose vial (PQ) / PFS (non PQ)
- **Innovax**
 - Cecolin 2v
 - Licensed in China / WHO prequalified
 - Adjuvant: Alum
 - Schedule: 2 doses (girls 9-14) or 3 doses (women 15-45)
 - Presentation: 1 dose vial / PFS
- **Walvax**
 - 2v
 - Licensed in China (March 2022)
 - Adjuvant: Alum
 - Schedule: 2 doses (girls 9-14) or 3 doses (women 15-30)
 - Presentation: 1 dose vial
- **SII**
 - 4v
 - Phase III – ongoing
 - Adjuvant: Alum
 - Schedule: 2 or 3 doses
 - Presentation: 1,2,5 doses vial
- **CNBG**
 - 4v
 - Phase III – ongoing
 - Adjuvant: Alum
 - Schedule: 3 doses
 - Presentation: 1, 3, 5 doses vial

Disclaimer: Map does not reflect the WHO / UN views

*Immunobridging study is sufficient for licensure in India / CIN2 efficacy is required in China

Product in clinical development based on tech transfer

BLA: Biologics License Application

Updated as per March 2022

Session6: (tech transfer)

Inst. Butantan

Merck

GSK

CNBG

SII

SII

CNBG

Walvax

Innovax

Rostec State Corp.

Tech transfer to local manufacturer via NVI

Sinergium

Marketed Products

Products in Clinical Development

Filling & Finishing
Available supply expected to increase with steep mid-term ramp-up

Supply evolution in short-, mid-, and long-term

- In recent years, Available supply for commercialization (ASC) grew approximately 15% per year, but insufficiently to serve demand.
- Some moderate impact of delays in pipeline/registration and slower capacity dev. have been recorded lately.
- In mid-long-term, available supply will increase significantly, driven by manufacturer’s development/scale-up efforts (ultimate size of increase will be influenced by demand).
- Currently, supply dominated by one manufacturer. In second half of decade, 9 valent to become dominant with entrance of new manufacturers (up to 4)

Risk due to potential pipeline delays and timelines/size of capacity ramp-up

- Past (1-3 yrs)
- Current
- Short term (1-3 yrs): x1.8
 - Base: +15%
 - High: -20%

- Mid Term (4-6 yrs): x3.3
 - Base: +20%

- Long Term (7-9 yrs): x3.7
 - Base: -20%
 - High: +40%

March 2022

SAGE meeting April 2022
HPV Vaccine Prices

- The reported price per dose of HPV vaccines shows a tiered structure by procurement method and income group, though with important overlap.
- The self-procuring MICs median price is significantly higher than Gavi and PAHO, creating affordability barriers for some.
- HPV price is also tiered by valency albeit with significant overlaps.
- UNICEF’s contracted price for Innovax’s product starting in 2022 is $2.90 per dose – not yet leveraged.

Median values in bold
Source: 2021 M4A Purchase Data (country-reported)
Note: Reduction in Gavi/UNICEF price is the result of new products being available. Gavi/UNICEF will pay this price when countries elect to introduce the relevant product into their national immunization systems.
Health agents are pictured during the first day of the yellow fever vaccination campaign in Kinshasa, on August 17, 2016.

© WHO /Eduardo Soteras Jalil
HPV global demand has been on a steady rise even if historically constrained by supply

Global demand has grown throughout the last decade to exceed 80m doses. After the impact of the COVID-19 pandemic, **demand is expected to start recovering its growth starting from 2022-23**.

The future evolution of demand and market dynamics in short and long term can shape differently depending on key policy decisions. The following scenarios have been simulated:

<table>
<thead>
<tr>
<th></th>
<th>Routine</th>
<th>MACs</th>
<th>Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>2-dose (age 9, interval 0,6 months)</td>
<td>2-dose (10-14 years)</td>
<td>Only currently active programs</td>
</tr>
<tr>
<td>Base case + Boys</td>
<td>2-dose (age 9, interval 0,6 months)</td>
<td>2-dose (10-14 years)</td>
<td>All HICs and MICs from 2023*</td>
</tr>
<tr>
<td>1 dose</td>
<td>1 dose (age 9) from 2023</td>
<td>1-dose (10-14 years) from 2023</td>
<td>Only currently active programs</td>
</tr>
<tr>
<td>1 dose + Boys</td>
<td>1 dose (age 9) from 2023</td>
<td>1-dose (10-14 years) from 2023</td>
<td>All countries from 2023*</td>
</tr>
<tr>
<td>Elimination</td>
<td>2-dose (age 9, interval 0,6 months) All countries reach 90% coverage</td>
<td>No</td>
<td>Only currently active programs</td>
</tr>
</tbody>
</table>

*with gradual ramp up over 3 years
Base case to stabilize on 125m doses PDR*

Assumptions:
- All countries introduce by 2028\(^1,2\)
- Gender neutral only in countries with existing recommendations\(^3\)
- China switch from 3-dose to 2-dose schedule in 2025

Results:
- PDR to reach ~140M in 2026 and stabilizes at ~125M doses by 2031
- MACs remain an important contributor to dose requirement
- Most demand growth outside of HIC countries (i.e. in non Gavi MICs and Gavi-supported countries)
- Forecasted boys vaccination requires approx. 10M doses per year, comprising ~ 10% of total PDR

Note: Gavi demand is comprised of 72 Member States and does not include India
1. China: national, girl-only introduction in 2025, assumes switch to 2-dose schedule
2. India: phased, girl-only introduction between 2024-2026
3. Gender neutral strategies are recommended exclusively in some HICs and UMICs

PDR = Programmatic dose requirement
Comparison of HPV PDR between key scenarios

- **Boys' vaccination in all HICs and UMICs** increases PDR by 18% between 2022-2031 compared to base case
- **1-dose** (routine and MAC) scenario stabilizes at ~70M doses by 2028
- **1-dose (routine and MACs) with boys' vaccination** stabilizes at ~120M doses by 2031 - at the same level as base case
- **Elimination scenario** grows steadily to above 150M doses

PDR = Programmatic dose requirement
Global supply-demand balance
Decreases in demand coupled with supply increases led to reduction in risk of global shortages included in short/term

<table>
<thead>
<tr>
<th>Demand Scenarios</th>
<th>Short-Term (1-3)</th>
<th>Mid-Term (4-6)</th>
<th>Long-Term (6-9)</th>
<th>Short-Term (1-3)</th>
<th>Mid-Term (4-6)</th>
<th>Long-Term (6-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-doses (routine & MACs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-doses (routine & MACs) & Boys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-dose (routine & MACs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-dose (routine & MACs) & Boys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Insufficient supply: Supply < 1.1X Demand
- Some risk of shortages: Supply < 1.3X Demand
- No risk of shortages: Supply > 1.3X Demand
- Excess supply: Supply > 2X Demand

Important assumptions of global supply/demand balance: No mismatch between available products and country preferences

Sage meeting April 2022

Single dose schedule supporting data assumed available since 2022 only for a limited number of products
Key takeaways
Key takeaways from updated market study

Short term

Decreases in demand due to active demand management and the impact of COVID-19, coupled with supply increases over recent years led to **significant reduction in the risk of global shortages**

Supply remains tight and given limited buffer, careful phasing of MACs and countries willingness to use any of the available HPV vaccines will be the most critical aspects to ensure all countries can access supply

Attention also required to the implementation of large catch-up campaigns in older age cohorts and to the widespread adoption of strategies targeting boys vaccination

Mid-term

A healthy supply situation will likely be reached in 2024 with comfortable buffer as result of existing suppliers capacity expanding and success of pipeline candidates achieving licensure and WHO prequalification (albeit with small volumes)

Mid-long-term

Active management of supplier base required from 2026-27 when significant excess supply is expected to avoid supply disruption and reduction of competition as result of potential unforeseen market exits
Impact of widespread adoption of 1-dose schedule

Short term

Further **improvement of the supply-demand balance**, allowing for higher supply flexibility

Expansion of the HPV program with available supply (adoption of boy vaccination and/or older age cohorts), or

Mid-long term

Rapid **reduction in global programmatic dose requirement**

Could impact the sustainability of the HPV market including through price changes and/or market exits. **Requires careful management**, including through generation of evidence for single-dose efficacy for all products.
Thank you

For more information see full [HPV Global Market Study 2022 Update](https://www.who.int/publications/m/item/who-hpv-vaccine-global-market-study-april-2022) here:

https://www.who.int/publications/m/item/who-hpv-vaccine-global-market-study-april-2022
Evidence from clinical trials to inform decision-making on reduced dose HPV vaccination schedules

Summary of key data

Lauri Markowitz, MD
SAGE HPV Work Group Member

SAGE Meeting, April 6, 2022
Efficacy and immunogenicity data for initial licensure of HPV vaccines, 3-dose schedules

- **Randomized controlled trials in ~15–26-year-old women**
 - Trial endpoints: cervical precancer lesions*
 - Efficacy against vaccine-type endpoints over 96% in per protocol analyses
 - Seroconversion one month after last dose close to 100%

- **Bridging immunogenicity trials in 9–15-year-olds**
 - Licensure/authorization in this age group based on non-inferior antibody response compared with that in young adult women in efficacy trials

Quadrivalent vaccine trials had other outcomes as well including, vulvar, vaginal precancers in females, genital warts
Transition from 3-dose to 2-dose schedule for persons who initiate vaccination before age 15 years

- Interest stimulated by post-hoc analyses of 3-dose RCT in which not all individuals completed a 3-dose schedule*
 - Efficacy against incident persistent HPV16/18 infections similar after 3, 2, 1 doses

- Non-inferiority immunogenicity studies then conducted to evaluate 2-doses in 9–14-year-olds vs 3-doses in ~15–26-year-olds
 - Seroconversion and geometric mean titers non-inferior in 2-dose group compared with 3 doses in women aged 16–26 years

- WHO recommendation change in 2014
 - 2 doses for persons aged 9–14 years

*Kreimer, et al. JNCI 2011
Evidence regarding single-dose HPV vaccination

- Same studies that stimulated interest in a 2-dose schedule led to interest in single-dose vaccination

- Noninferiority immunogenicity studies not possible because single-dose HPV vaccination results in lower antibody titers than 2 or 3 doses
 - While the basis of protection after HPV vaccination thought to be neutralizing antibody, no established minimum antibody threshold for protection
 - Very low levels of antibody thought to be protective

- Efficacy studies needed for evaluation of single dose vaccination
ESCUDO, Costa Rica

- RCT to evaluate non-inferiority of one versus two doses of 2vHPV and 9vHPV for prevention of new cervical HPV16/18 infections that persist 6+ months

- Evaluate one dose compared to zero doses

Trial

- Girls 12-16 years old (n=20,300)

 - **Bivalent** (n=10,150)
 - M0: Randomized to vaccine
 - M6: Randomized to dosing schedule
 - 1 Dose, 2 Doses

 - **9-valent** (n=10,150)
 - 1 Dose, 2 Doses

Epidemiologic Surveys

- HPV infection status M0 and M6
- HPV vaccine

Active Follow-up

- Cervical cells, blood, urine at M12, M18, M24, M30, M36, M42, M48, M54, M60

ESCUDO, Costa Rica

- RCT to evaluate non-inferiority of one versus two doses of 2vHPV and 9vHPV for prevention of new cervical HPV16/18 infections that persist 6+ months
- Evaluate one dose compared to zero doses

Trial

- Girls 12-16 years old (n=20,300)

 - **Bivalent** (n=10,150)
 - M0: Randomized to vaccine
 - M6: Randomized to dosing schedule
 - 1 Dose, 2 Doses

 - **9-valent** (n=10,150)
 - 1 Dose, 2 Doses

Epidemiologic Surveys

- HPV infection status M0 and M6
- HPV vaccine

Active Follow-up

- Cervical cells, blood, urine at M12, M18, M24, M30, M36, M42, M48, M54, M60
Evidence on single-dose HPV vaccination

- Meanwhile, interest in single-dose HPV vaccination increased
- Global HPV vaccine supply/demand imbalance recognized
- Studies that initially provided data on reduced dose HPV vaccination continued follow-up and have additional data
- Additional studies initiated to evaluate single-dose HPV vaccination
Trials with data on single-dose vaccination

<table>
<thead>
<tr>
<th>Trial/Country</th>
<th>Evidence</th>
<th>Vaccine</th>
<th>Age Group (yrs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVT Costa Rica</td>
<td>Efficacy/Immunogenicity</td>
<td>2vHPV</td>
<td>Females 18–25</td>
<td>Post-hoc analyses: participants randomized to 3 doses or control, but analyzed as 1-, 2-, 3-dose groups</td>
</tr>
<tr>
<td>India IARC</td>
<td>Efficacy/Immunogenicity</td>
<td>4vHPV</td>
<td>Females 10–18</td>
<td>Post-hoc analyses: participants randomized to 2 or 3 doses but analyzed as 1-, 2-, 3-dose groups</td>
</tr>
<tr>
<td>KEN SHE Kenya</td>
<td>Efficacy</td>
<td>2vHPV</td>
<td>Females 15–20</td>
<td>RCT: 1 dose of 2vHPV, 9vHPV, MenA</td>
</tr>
<tr>
<td>DoRIS Tanzania</td>
<td>Immunogenicity</td>
<td>2vHPV</td>
<td>Females 9–14</td>
<td>RCT: 1-, 2-, 3-dose groups</td>
</tr>
<tr>
<td>Thailand Impact</td>
<td>Effectiveness/Impact</td>
<td>2vHPV</td>
<td>Females grade 8</td>
<td>Girls in one province received 1 dose; in another 2 doses. Baseline and post-vaccination prevalence surveys</td>
</tr>
</tbody>
</table>

SAGE meeting April 2022
Protection after 1, 2 or 3 doses of 2vHPV through 11 years, Costa Rica Vaccine Trial

Post-hoc analysis of RCT: women vaccinated at age 18–25 years randomized to receive 3 doses of 2vHPV or control, but not all completed series

<table>
<thead>
<tr>
<th>Doses</th>
<th>Number</th>
<th>Prevalent 16/18 HPV % (95% CI)</th>
<th>Vaccine efficacy % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 doses</td>
<td>1365</td>
<td>2.0 (1.3–2.8)</td>
<td>80.0% (70.7–87.0)</td>
</tr>
<tr>
<td>2 doses</td>
<td>62</td>
<td>1.6 (0.1–7.7)</td>
<td>83.8% (19.5–99.2)</td>
</tr>
<tr>
<td>1 dose</td>
<td>112</td>
<td>1.8 (0.3–5.8)</td>
<td>82.1% (40.2–97.0)</td>
</tr>
<tr>
<td>Control</td>
<td>1783</td>
<td>10.0 (8.7–11.4)</td>
<td>Reference</td>
</tr>
</tbody>
</table>

HPV 16 antibody after 1, 2 or 3 doses of 2vHPV through 11 years, Costa Rica Vaccine Trial

Stable HPV 16 and 18 antibody levels through 11 years post vaccination with different dosing schedules, at least 10-fold above levels in unvaccinated

Antibody by VLP-based ELISA at the NCI HPV Immunology Laboratory
Immunogenicity and efficacy of 1, 2 and 3 doses of 4vHPV, India IARC Trial

Study designed as a cluster RCT to compare 2 vs 3 doses of 4vHPV in 10–18 year-old unmarried girls, initiated Sept 2009

2 dose Group (0,6 months) 3 dose Group (0,2,6 months)

Loss of randomization due to order in April 2010 by Ministry of Health to stop HPV vaccination in research studies

1 dose 2 doses 0, 2 months 2 doses 0, ≥6 months 3 doses

Randomized trial design lost and analyzed as observational cohort
Protection after 1, 2 or 3 doses of 4vHPV through 10 years, India IARC Trial

<table>
<thead>
<tr>
<th>Doses</th>
<th>Number</th>
<th>Incident 16/18 HPV % (95% CI)</th>
<th>Persistent 16/18 HPV % (95% CI)</th>
<th>VE against persistent infection % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 doses</td>
<td>1649</td>
<td>3.0 (2.3–3.8)</td>
<td>0.1 (0.0–0.4)</td>
<td>91.2% (75.3–98.7)</td>
</tr>
<tr>
<td>2 doses (0, 6 months)</td>
<td>1685</td>
<td>2.6 (2.0–3.3)</td>
<td>0.1 (0.0–0.4)</td>
<td>94.5% (82.4–99.8)</td>
</tr>
<tr>
<td>1 dose</td>
<td>2454</td>
<td>3.1 (2.6–3.8)</td>
<td>0.0 (0.0–0.3)</td>
<td>94.2% (83.7–99.1)</td>
</tr>
<tr>
<td>Control</td>
<td>1268</td>
<td>9.7 (8.2–11.3)</td>
<td>2.7 (1.9–3.7)</td>
<td>Reference</td>
</tr>
</tbody>
</table>

Post-hoc analysis; women vaccinated at age 10-18 years, randomized to receive 3 or 2 4vHPV doses
Unvaccinated women age-matched to married vaccinated participants recruited as controls
Persistent infection defined as the same HPV type detected in consecutive samples at least 10 months apart
VE adjusted for background HPV infection frequency, time between date of marriage and first cervical specimen collection, and number of cervical specimens per participant
KEN SHE

- Randomized trial of 1 dose of 9vHPV or 2vHPV or meningococcal vaccine
 - 2250 Kenyan women aged 15–20 years; 1-5 lifetime partners; HIV negative
- 1458 girls evaluated for efficacy at month 18 in mITT HPV 16/18 cohort

<table>
<thead>
<tr>
<th>Study arm</th>
<th>Number</th>
<th>Incident persistent HPV 16/18</th>
<th>Incidence/100 PY</th>
<th>VE% (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9vHPV</td>
<td>496</td>
<td>1</td>
<td>0.17</td>
<td>97.5% (81.7–99.7)</td>
</tr>
<tr>
<td>2vHPV</td>
<td>489</td>
<td>1</td>
<td>0.17</td>
<td>97.5% (81.6–99.7)</td>
</tr>
<tr>
<td>MCV</td>
<td>473</td>
<td>36</td>
<td>6.83</td>
<td>Reference</td>
</tr>
</tbody>
</table>

Enrollment between December 2018 and June 2021
mITT, modified intention to treat: HPV 16/18 HPV DNA negative (external genital and cervical swabs) at enrollment and month 3 (self-collected vaginal swab) and HPV antibody negative at enrollment

Barnabas, et al. DOI 10.21203/rs.3.rs-1090565/v1; accepted for publication at NEJM Evidence
DoRIS

Dose Reduction Immunobridging & Safety Study of 2vHPV and 9vHPV in Tanzanian girls

- 930 girls aged 9–14 years randomized to 1, 2 or 3 doses of 2vHPV or 9vHPV
- Objectives:
 - Demonstrate non-inferiority of HPV 16/18 antibody response after 1 dose compared with 2 or 3 doses of same vaccine at month 24
 - Demonstrate non-inferiority of HPV 16/18 GMCs comparing 1 dose in DoRIS with historical efficacy cohorts that received 1 dose (CVT, India IARC, KEN SHE).
DoRIS: seroconversion results

<table>
<thead>
<tr>
<th></th>
<th>1 dose</th>
<th></th>
<th>2 doses</th>
<th></th>
<th>3 doses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Seropositive (%)</td>
<td>N</td>
<td>Seropositive (%)</td>
<td>N</td>
<td>Seropositive (%)</td>
</tr>
<tr>
<td>2vHPV (Cervarix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV-16</td>
<td>148</td>
<td>147 (99.3%)</td>
<td>141</td>
<td>141 (100%)</td>
<td>141</td>
<td>141 (100%)</td>
</tr>
<tr>
<td>HPV-18</td>
<td>141</td>
<td>139 (98.6%)</td>
<td>140</td>
<td>140 (100%)</td>
<td>136</td>
<td>136 (100%)</td>
</tr>
<tr>
<td>9vHPV (Gardasil-9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV-16</td>
<td>145</td>
<td>144 (99.3%)</td>
<td>141</td>
<td>141 (100%)</td>
<td>140</td>
<td>140 (100%)</td>
</tr>
<tr>
<td>HPV-18</td>
<td>136</td>
<td>133 (97.8%)</td>
<td>136</td>
<td>136 (100%)</td>
<td>142</td>
<td>141 (99.3%)</td>
</tr>
</tbody>
</table>

- HPV 16: non-inferiority criteria met for 1 dose compared with 2 or 3, both vaccines
- HPV 18: non-inferiority criteria not met for 1 dose compared with 2 or 3 doses
DoRIS: geometric mean concentrations, 9vHPV

- 2-dose and 3-dose levels decline after peak at month 7
- 2-dose and 3 dose levels similar at month 24
- 1-dose levels lower than 2-dose or 3-dose levels; relatively stable from month 12 (plateau)

VLP-based ELISA at the NCI HPV Immunology Laboratory
DoRIS: geometric mean concentrations, 2vHPV

- 2-dose and 3-dose levels decline after peak at month 7
- 3-dose levels higher than 2-dose levels at month 24
- 1-dose levels lower than 2 or 3-dose levels; relatively stable between months 12 and 24

VLP-based ELISA at the NCI HPV Immunology Laboratory

Session6_HPV
DoRIS: immunobridging to efficacy studies (CVT and India)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>GMC (IU/mL)</th>
<th>GMC ratio(^1) (95% CI)</th>
<th>Seroconversion</th>
<th>Difference(^2) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DoRIS (Cervarix®)</td>
<td>148</td>
<td>22.9</td>
<td></td>
<td>147 (99.3%)</td>
<td></td>
</tr>
<tr>
<td>CVT (Cervarix®)</td>
<td>97</td>
<td>17.7</td>
<td>1.30 (1.00 -1.68)</td>
<td>96 (99.0%)</td>
<td>0.4% (-3.1 - 5.1)</td>
</tr>
<tr>
<td>DoRIS (Gardasil-9®)</td>
<td>145</td>
<td>13.7</td>
<td></td>
<td>144 (99.3%)</td>
<td></td>
</tr>
<tr>
<td>India (Gardasil®)</td>
<td>131</td>
<td>6.7</td>
<td>1.29 (0.91 -1.82)(^3)</td>
<td>121 (92.4%)</td>
<td>6.9% (2.4-13.1)</td>
</tr>
<tr>
<td>HPV-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DoRIS (Cervarix®)</td>
<td>141</td>
<td>9.9</td>
<td></td>
<td>139 (98.6%)</td>
<td></td>
</tr>
<tr>
<td>CVT (Cervarix®)</td>
<td>97</td>
<td>8.0</td>
<td>1.23 (0.95 -1.60)</td>
<td>96 (99.0%)</td>
<td>-0.4% (-4.4 - 4.4)</td>
</tr>
<tr>
<td>DoRIS (Gardasil-9®)</td>
<td>136</td>
<td>5.7</td>
<td></td>
<td>133 (97.8%)</td>
<td></td>
</tr>
<tr>
<td>India (Gardasil®)</td>
<td>129</td>
<td>2.2</td>
<td>1.75 (1.22 -2.50)(^3)</td>
<td>99 (76.7%)</td>
<td>21.0% (13.5-29.5)</td>
</tr>
</tbody>
</table>

1\(^{\text{Ratio of geometric mean concentrations (DoRIS / historical cohort).}}\) 2\(^{\text{Difference in seroconversion (DoRIS - historical cohort).}}\) 3\(^{\text{Adjusted for age.}}\)

1 dose in DoRIS is non-inferior to 1 dose in historical cohorts at month 24, for HPV-16 & HPV-18, for both 2vHPV & 9vHPV.
DoRIS conclusions

- Seropositivity >97.5% for all doses of both vaccines
- Antibody levels by dose, vaccine, and kinetics over time similar to those in other HPV vaccine studies
- Avidity (not shown) - no difference between dose groups or vaccines
- Immunobridging showed that 1-dose responses were non-inferior in DoRIS compared with those in studies where 1-dose efficacy observed
Thailand Impact Study

- Observational study of 1 dose and 2 doses of 2vHPV given to Grade 8 girls (age <15 years) in two similar Thai provinces

- Primary objectives:
 - Demonstrate HPV vaccine effectiveness of 1 dose and 2 doses
 - Year 2 and Year 4 post-vaccination
 - Effectiveness by a reduction in vaccine-type HPV prevalence* (HPV 16 and 18) compared to prevalence among unvaccinated same grade female students collected in a baseline survey
 - Evaluate if HPV vaccine effectiveness of 1 dose is non-inferior to 2 doses by comparing reductions in vaccine-type prevalence
 - Year 4 post-vaccination

*Measured in urine, by COBAS
Selected other trials evaluating single-dose vaccination, data forthcoming

<table>
<thead>
<tr>
<th>Trial/Country</th>
<th>Evidence</th>
<th>Vaccine</th>
<th>Age Group (yrs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOPE</td>
<td>Impact/Effectiveness</td>
<td>2vHPV</td>
<td>Females 15–16</td>
<td>Girls in one district received 1 dose as catch-up in grade 10. Baseline and post-vaccination cross sectional prevalence surveys; includes WLWH</td>
</tr>
<tr>
<td>South Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANDS</td>
<td>Immunogenicity</td>
<td>9vHPV</td>
<td>Females 4–8, 9–14 and 15–26</td>
<td>RCT: 1 or 2 doses 3 doses in 15–26-year-olds</td>
</tr>
<tr>
<td>The Gambia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCUDDO</td>
<td>Efficacy/Immunogenicity</td>
<td>2vHPV</td>
<td>Females 12–16</td>
<td>RCT: 1 or 2 doses of 2vHPV or 9vHPV</td>
</tr>
<tr>
<td>Costa Rica</td>
<td></td>
<td>9vHPV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Updated systematic review on the immunogenicity and efficacy of a single dose of HPV vaccine

April 2022
SAGE Working Group Human Papillomavirus Immunization

Trusted evidence.
Informed decisions.
Better health.
Methods

- Update of 2019 review on single dose HPV vaccine
 - One dose HPV vaccine vs no vaccine
 - One dose HPV vaccine vs two/three doses HPV vaccine
- Electronic searches were conducted on PubMed, CENTRAL, and EMBASE.
- Search was updated from February 2019 to January 2022.
- Two reviewers independently screened all studies, extracted data, and assessed risk of bias for included studies.
Included studies (n = 55)

• 3 RCTs were identified evaluating one dose (Kenya, China, Tanzania)
• 4 post-hoc analyses of RCTs (CVT, India, CVT/PATRICIA, Canada)
• 3 case-control studies
• 45 observational cohort studies

• 20 new studies since 2019 review
• Only three studies included males
• 10 studies on bivalent (Cervarix), 36 quadrivalent (Gardasil), 8 studies more than one type HPV vaccine, 1 study Cecolin
One dose of HPV vaccine vs no vaccine
– clinical outcomes
Persistent HPV infections following bivalent vaccine (Cervarix) - RCT

mITT population: negative for HPV 16/18 antibodies and DNA at enrolment

VE = 97.5% (81.6% to 99.7%)
Persistent HPV infections following nonavalent vaccine (Gardasil9) – RCT

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>One dose</th>
<th>No vaccine</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Random, 95% CI</td>
<td>M-H, Random, 95% CI</td>
</tr>
<tr>
<td>2.1.1 Incident HPV 16/18 infections that persisted for 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya1 (RCT, 15-20 years old) (1)</td>
<td>1</td>
<td>496</td>
<td>36</td>
<td>473</td>
</tr>
<tr>
<td>2.1.2 Incident HPV 16/18/31/33/45/52/58 infections that persisted for 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya1 (RCT, 15-20 years old) (2)</td>
<td>4</td>
<td>325</td>
<td>29</td>
<td>290</td>
</tr>
</tbody>
</table>

Footnotes

(1) 18 months follow-up VE = 97.49% (81.66% to 99.66%)
(2) 18 months follow-up VE = 88.91% (68.45% to 96.10%)

mITT population: negative for HPV 16/18/31/33/45/52/58 antibodies and DNA at enrolment

- HPV 16/18: VE = **97.5% (81.7% to 99.7%)**
- HPV 16/18/31/33/45/52/58: VE = **88.9% (68.5% to 96.1%)**
Persistent HPV infections following bivalent vaccine (Cervarix) – post-hoc RCT analyses

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>One dose</th>
<th>No vaccine (HAV)</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Random, 95% CI</td>
<td>A</td>
</tr>
<tr>
<td>1.2.1 Incident HPV 16/18 infections that persisted for 6 months</td>
<td>1</td>
<td>234</td>
<td>24</td>
<td>1017</td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2 Incident HPV 16/18 infections that persisted for 12 months</td>
<td>1</td>
<td>234</td>
<td>17</td>
<td>1021</td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.3 Incident HPV 31/33/45 infections that persisted for 6 months</td>
<td>9</td>
<td>222</td>
<td>15</td>
<td>1043</td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.4 Incident HPV 31/33/45 infections that persisted for 12 months</td>
<td>5</td>
<td>230</td>
<td>8</td>
<td>1061</td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes
(1) 47.6 months follow-up
(2) 47.6 months follow-up
(3) 47.6 months follow-up
(4) 47.6 months follow-up

SAGE meeting April 2022

One dose of HPV vaccine vs two doses HPV vaccine

– clinical outcomes
Persistent HPV infections following bivalent vaccine (Cervarix) – post-hoc RCT analyses

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>One dose</th>
<th>Two doses</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>M-H, Random</td>
<td>A</td>
</tr>
<tr>
<td>3.1.1 incident HPV 16/18 infections that persisted for 6 months</td>
<td>1 1234</td>
<td>4 2573</td>
<td>0.52 [0.06, 4.66]</td>
<td></td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (1)</td>
<td> 47.6 months follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.2 incident HPV 16/18 infections that persisted for 12 months</td>
<td>1 1234</td>
<td>3 2576</td>
<td>0.70 [0.07, 6.68]</td>
<td></td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (2)</td>
<td> 47.6 months follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.3 Incident HPV 31/33/45 infections that persisted for 6 months</td>
<td>9 1222</td>
<td>18 2549</td>
<td>1.04 [0.47, 2.31]</td>
<td></td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (3)</td>
<td> 47.6 months follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.4 Incident HPV 31/33/45 infections that persisted for 12 months</td>
<td>5 1230</td>
<td>11 2569</td>
<td>0.95 [0.33, 2.73]</td>
<td></td>
</tr>
<tr>
<td>CVT/PATRICIA (post-RCT, 15-25 years) (4)</td>
<td> 47.6 months follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
(1) 47.6 months follow-up
(2) 47.6 months follow-up
(3) 47.6 months follow-up
(4) 47.6 months follow-up

SAGE meeting April 2022

Graphical Note:
- The graph compares the risk ratios of one dose versus two doses for different HPV infections.
- The risk ratios are calculated using the Mantel-Haenszel (M-H) method with random effects, and the 95% confidence intervals are provided.
- The risk of bias is assessed using a modified scale with icons indicating high, moderate, low, and very low risk.
CIN following quadrivalent vaccine (Gardasil) – observational studies

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>One dose</th>
<th>Two doses</th>
<th>Risk Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
</tr>
<tr>
<td>4.7.1 CIN1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia3 (retrospective cohort, 12-19 yrs) (1)</td>
<td>20</td>
<td>2568</td>
<td>30</td>
<td>3412</td>
</tr>
<tr>
<td>4.7.2 CIN2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia1 (retrospective cohort, 12-26 yrs) (2)</td>
<td>54</td>
<td>6938</td>
<td>77</td>
<td>8638</td>
</tr>
<tr>
<td>Australia4 (retrospective cohort, 15 yrs) (3)</td>
<td>89</td>
<td>18104</td>
<td>174</td>
<td>37819</td>
</tr>
<tr>
<td>Australia3 (retrospective cohort, 12-19 yrs) (4)</td>
<td>16</td>
<td>2568</td>
<td>18</td>
<td>3412</td>
</tr>
<tr>
<td>4.7.3 CIN2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark3 (retrospective cohort, 16 yrs) (5)</td>
<td>18</td>
<td>27334</td>
<td>83</td>
<td>88029</td>
</tr>
<tr>
<td>USA22 (retrospective cohort, 9-25 yrs) (6)</td>
<td>64</td>
<td>7099</td>
<td>85</td>
<td>8147</td>
</tr>
<tr>
<td>USA8 (case-control, 14-21 yrs) (7)</td>
<td>118</td>
<td>638</td>
<td>97</td>
<td>457</td>
</tr>
<tr>
<td>USA21 (test-negative, 12-26 yrs) (8)</td>
<td>47</td>
<td>136</td>
<td>35</td>
<td>108</td>
</tr>
<tr>
<td>4.7.4 CIN3+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA24 (retrospective cohort, 15-20 yrs) (9)</td>
<td>112</td>
<td>43245</td>
<td>96</td>
<td>34401</td>
</tr>
<tr>
<td>USA8 (case-control, 14-21 yrs) (10)</td>
<td>47</td>
<td>239</td>
<td>36</td>
<td>168</td>
</tr>
<tr>
<td>Denmark3 (retrospective cohort, 16 yrs) (11)</td>
<td>11</td>
<td>27346</td>
<td>36</td>
<td>88100</td>
</tr>
<tr>
<td>Australia1 (retrospective cohort, 12-26 yrs) (12)</td>
<td>78</td>
<td>6938</td>
<td>72</td>
<td>8638</td>
</tr>
<tr>
<td>Australia3 (retrospective cohort, 12-19 yrs) (13)</td>
<td>12</td>
<td>2568</td>
<td>11</td>
<td>3412</td>
</tr>
<tr>
<td>Australia4 (retrospective cohort, 15 yrs) (14)</td>
<td>19</td>
<td>4035</td>
<td>25</td>
<td>8641</td>
</tr>
</tbody>
</table>

Favours one dose | Favours two doses

SAGE meeting April 2022
One dose of HPV vaccine vs two doses HPV vaccine

- immunological outcomes
Immunogenicity – seropositivity following bivalent (Cervarix) vaccine

<table>
<thead>
<tr>
<th>Study</th>
<th>HPV type</th>
<th>Timepoint (months)</th>
<th>One dose</th>
<th>Two doses</th>
<th>Three doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanzania1</td>
<td>16</td>
<td>7</td>
<td>148</td>
<td>142</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7</td>
<td>141</td>
<td>141</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>12</td>
<td>147</td>
<td>140</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>12</td>
<td>140</td>
<td>139</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>24</td>
<td>148</td>
<td>140</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24</td>
<td>141</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>Uganda1</td>
<td>16</td>
<td>24</td>
<td>36</td>
<td>145</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24</td>
<td>36</td>
<td>145</td>
<td>195</td>
</tr>
<tr>
<td>Netherlands1</td>
<td>16</td>
<td>24</td>
<td>48</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24</td>
<td>48</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Costa Rica1</td>
<td>16</td>
<td>48</td>
<td>78</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>108</td>
<td>118</td>
<td>66</td>
<td>1365</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>108</td>
<td>118</td>
<td>66</td>
<td>1365</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>132</td>
<td>118</td>
<td>66</td>
<td>1365</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>132</td>
<td>118</td>
<td>66</td>
<td>1365</td>
</tr>
</tbody>
</table>
Immunogenicity – 1 vs 2 dose ratio of GMTs – bivalent (Cervarix) vaccine

<table>
<thead>
<tr>
<th>Study, HPV strain</th>
<th>Ratio of GMTs (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanzania1 (RCT, 9-14 years), HPV 16</td>
<td>0.01 (0.01, 0.01)</td>
</tr>
<tr>
<td>Tanzania1 (RCT, 9-14 years), HPV 16</td>
<td>0.01 (0.01, 0.02)</td>
</tr>
<tr>
<td>Tanzania1 (RCT, 9-14 years), HPV 16</td>
<td>0.07 (0.06, 0.09)</td>
</tr>
<tr>
<td>Tanzania1 (RCT, 9-14 years), HPV 16</td>
<td>0.09 (0.07, 0.12)</td>
</tr>
<tr>
<td>Netherlands1 (cohort, 12-16 years), HPV 16</td>
<td>0.09 (0.06, 0.16)</td>
</tr>
<tr>
<td>Netherlands1 (cohort, 12-16 years), HPV 18</td>
<td>0.06 (0.04, 0.11)</td>
</tr>
<tr>
<td>Tanzania1 (RCT, 9-14 years), HPV 16</td>
<td>0.14 (0.12, 0.17)</td>
</tr>
<tr>
<td>Tanzania1 (RCT, 9-14 years), HPV 18</td>
<td>0.20 (0.17, 0.24)</td>
</tr>
<tr>
<td>Uganda1 (cohort, 19-11 years), HPV 16</td>
<td>0.28 (0.17, 0.49)</td>
</tr>
<tr>
<td>Uganda1 (cohort, 19-11 years), HPV 18</td>
<td>0.32 (0.19, 0.53)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 16-25 years), HPV 16</td>
<td>0.39 (0.29, 0.53)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 18</td>
<td>0.34 (0.25, 0.46)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 16-25 years), HPV 16</td>
<td>0.11 (0.04, 0.27)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 18</td>
<td>0.14 (0.06, 0.33)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 16</td>
<td>0.51 (0.40, 0.65)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 18</td>
<td>0.56 (0.44, 0.69)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 16</td>
<td>0.42 (0.31, 0.56)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 18</td>
<td>0.49 (0.36, 0.65)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 16</td>
<td>0.52 (0.38, 0.71)</td>
</tr>
<tr>
<td>Costa Rica1 (post-RCT, 18-25 years), HPV 18</td>
<td>0.56 (0.42, 0.76)</td>
</tr>
</tbody>
</table>
Summary one dose efficacy/effectiveness

One dose of HPV vaccine vs no vaccine

Immunogenicity

➢ One dose of HPV vaccine resulted in higher GMTs and seropositivity for HPV 16 and 18 than no vaccine and this was sustained for up to 5-11 years (high certainty).

HPV infections

➢ One dose HPV vaccine resulted in a large reduction in persistent HPV 16/18 infections compared with no vaccine over the short term (high certainty).
➢ One dose HPV vaccine resulted in fewer persistent HPV 16/18 infections compared with no vaccine over the long term (moderate certainty).

Other clinical outcomes

➢ Evidence suggests that one dose of HPV vaccine may reduce the incidence of genital warts, abnormal cytology, and CIN compared with no vaccine, but this is based on observational studies at serious risk of bias.
Evidence profile 1: Effectiveness and immunogenicity of one dose of HPV vaccine compared with no HPV vaccination

<table>
<thead>
<tr>
<th></th>
<th>Nº of studies</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent HPV 16/18 infections: short term follow-up, 18 months</td>
<td>1 RCT</td>
<td>⬤⬤⬤⬤ High</td>
</tr>
<tr>
<td>Persistent HPV 16/18 infections: long term follow-up, 4-10 years</td>
<td>2 post-hoc analyses of RCTs</td>
<td>⬤⬤⬤◯ Moderate ¹</td>
</tr>
<tr>
<td>Seroconversion to HPV 16: follow-up 6 months to 11 years</td>
<td>2 RCTs, 1 post-hoc analysis of RCT, 3 obs studies</td>
<td>⬤⬤⬤⬤ High</td>
</tr>
<tr>
<td>Seroconversion to HPV 18: follow-up 6 months to 11 years</td>
<td>2 RCTs, 1 post-hoc analysis of RCT, 3 obs studies</td>
<td>⬤⬤⬤⬤ High</td>
</tr>
<tr>
<td>Geometric mean titres (GMT) for HPV 16: follow-up 4-6 years</td>
<td>1 post-hoc analysis of RCT, 3 obs studies</td>
<td>⬤⬤⬤⬤ High</td>
</tr>
<tr>
<td>Geometric mean titres (GMT) for HPV 18: follow-up 4-6 years</td>
<td>1 post-hoc analysis of RCT, 3 obs studies</td>
<td>⬤⬤⬤⬤ High</td>
</tr>
</tbody>
</table>

¹Downgraded one level due to some concerns with bias due to confounding and selection of the reported result.
Summary one dose efficacy/effectiveness

One dose vs 2 or 3 doses of HPV vaccine

Immunogenicity
- One dose resulted in lower GMTs for HPV 16 and 18 than two or three doses (high certainty)
- One, two, or three doses resulted in similarly high rates of seropositivity to HPV 16 and 18 (high certainty)

HPV infections
- One dose resulted in little to no difference in persistent HPV 16/18 infections compared with two or three doses (low certainty)

Other clinical outcomes
- The estimates of effect between one, two, and three doses come mostly from observational studies that are at serious risk of bias due to confounding.
Evidence profile 2: Effectiveness and immunogenicity of **one dose** of HPV vaccine compared with **two doses** HPV vaccine

<table>
<thead>
<tr>
<th>Nº of studies</th>
<th>Certainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent HPV 16/18 infections: long term follow-up, 4-10 years</td>
<td> Low<sup>1,2</sup></td>
</tr>
<tr>
<td>2 post-hoc analyses of RCTs</td>
<td> Low<sup>1,2</sup></td>
</tr>
<tr>
<td>Seroconversion to HPV 16: follow-up 6 months to 11 years</td>
<td> High</td>
</tr>
<tr>
<td>2 RCTs, 1 post-hoc analysis of RCT, 2 obs studies</td>
<td> High</td>
</tr>
<tr>
<td>Seroconversion to HPV 18: follow-up 6 months to 11 years</td>
<td> High</td>
</tr>
<tr>
<td>2 RCTs, 1 post-hoc analysis of RCT, 2 obs studies</td>
<td> High</td>
</tr>
<tr>
<td>Geometric mean titres (GMT) for HPV 16: follow-up 6 months to 11 years</td>
<td> High</td>
</tr>
<tr>
<td>2 RCTs, 1 post-hoc analysis of RCT, 1 obs studies</td>
<td> High</td>
</tr>
<tr>
<td>Geometric mean titres (GMT) for HPV 18: follow-up 4-6 years</td>
<td> High</td>
</tr>
<tr>
<td>2 RCTs, 1 post-hoc analysis of RCT, 1 obs studies</td>
<td> High</td>
</tr>
</tbody>
</table>

1 Downgraded one level due to some concerns with bias due to confounding and selection of the reported result.

2 Downgraded one level due to imprecision, few events and a 95% confidence interval that encompasses a benefit, no effect, and a harm.
Acknowledgements

Cochrane Response:

Hanna Bergman, Brian Buckley, Elise Cogo, Jennifer Petkovic, Ingrid Arevalo Rodriguez, Meghan Sebastianski, Tie Yamato, Gemma Villanueva

Conflict of interest statement

No financial or non-financial conflicts of interest declared
Potential impact of 1-dose HPV vaccination in low and middle income countries (LMICs)

A modeling analysis using HPV-ADVISE LMIC

Marc Brisson, PhD
Full Professor, Université Laval
Modeling Team

Université Laval
• Jean-François Laprise, PhD
• Élodie Bénard, MSc
• Mélanie Drolet, PhD

London School of Hygiene and Tropical Medicine (LSHTM)
• Mark Jit, PhD
• Kiesha Prem, MSc

Imperial College London
• Marie-Claude Boily, PhD

Harvard
• Jane J Kim, PhD
• Emily Burger, PhD

Conflicts of interest statements

• Single-Dose HPV vaccine evaluation consortium

Funding
Question considered by the Working Group

• Should an off-label, permissive one-dose HPV vaccine schedule be recommended for use:
 • In multi-age cohort (MAC) catch-up?
 • In routine cohorts?

Objectives

• Examine & compare the population-level impact and efficiency of:
 • 1-dose vs 2-dose MAC strategies
 • 1-dose vs 2-dose routine girls-only strategies

Using 4 LMICs that represent different country profiles (sexual behaviour, HPV epidemiology)
Methods

Model overview

• HPV-ADVISE LMIC (Agent-based Dynamic model for Vaccination & Screening Evaluation) ¹

• Transmission-dynamic model of HPV infection and disease (includes herd immunity)

• Models 18 HPV types:
 - Types included in the 9-valent vaccine (HPV-6/11/16/18/31/33/45/52/58)
 - 9 other high risk types

• Fit HPV-ADVISE to India, Vietnam, Nigeria and Uganda ³
 - Demographic and sexual behaviour
 - HPV prevalence and cervical cancer incidence (age and type-specific)
 - Data from international databases and original studies ³

REF: 1. Drolet, Laprise et al., Lancet ID 2021; ³: Demographic and Health Surveys, Multiple Indicator Survey, ICO information Centre on HPV and Cancer, United Nations Statistics Division, HIV and AIDS HUB for Asia Pacific-Evidence to action, WHO Global Health Observatory data repository, literature reviews, and original studies from IARC and Dr. M Alary
Question 1a

Could Multiple Age Cohort (MAC) vaccination mitigate the impact of delays in HPV vaccine introduction?
Introduction of HPV vaccination has been delayed in low- and middle-income countries (LMIC)
- resource constraints, shortage of HPV vaccine supply, COVID-19 disruptions

Many LMICs have recently started or will start HPV vaccination in the next few years
- LMICs that started recently with routine 9-year-old vaccination have cohorts aging out of the 9 to 14-year-old vaccination window and/or may have recent lower coverage
- LMICs that have yet to start will have potentially lost the opportunity to vaccinate 5 cohorts of girls (prior to age 15 years) before they age out the 9-14 year old vaccination window
Impact of MACs to mitigate delays in HPV vaccine introduction

Country profile: INDIA

Girls-only vaccination, Routine = 9 yrs old, MACs = 10-14 yrs old, Vaccination coverage = 80%, Vaccine efficacy (VE) = 100%

If high coverage is achieved, MACs can mitigate the impact of delays in HPV vaccine introduction.

However, MACs with 2 doses may worsen vaccine supply issues.
Impact of MACs to mitigate delays in HPV vaccine introduction

4 country profiles

Girls-only vaccination, Routine = 9 yrs old, MACs = 10-14 yrs old, Vaccination coverage = 80%, Vaccine efficacy (VE) = 100%

Conclusions are the same for the 4 country profiles
Question 1b

Given limited resources & limited vaccine supply, could MAC vaccination with 1 dose be an efficient strategy?

Will depend on 1-dose vaccine efficacy and duration of protection
1-dose vaccine efficacy (VE) scenarios

• Best case: VE 1 dose = 2 doses = 100%
 • India IARC Trial: 95.4% against HPV16/18 persistent infections
 • Kenya KEN-SHE RCT: 97.5% against HPV16/18 persistent infection

• Worst case: VE 1 dose ≈ 85%
 • Lower bound of the India IARC Trial 95% confidence interval: 85%
 • Thailand Impact Study: 83.3% against HPV16/18 (unpublished data)

1-dose duration of vaccine protection (VD) scenarios

• Sustained protection of 1 dose through 10 years in India (if average duration was 10 years we would already be seeing a decline)

• Based on these results, 3 scenarios of 1-dose duration:
 • Lifelong (same as assumption for 2 doses)
 • 30 years
 • 20 years (within the next 5 years we would start seeing a decline in efficacy)

REF: 1. Basu, Lancet Oncol 2021, 2. Barnabas, DOI 10.21203/rs.3.rs-1090565/v1; Duration of protection is modelled using a normal distribution (Standard Deviation = 5 years)
Impact 1-dose vs 2-dose MACs

Country profile: INDIA
Girls-only, Routine = 9 yrs old, MACs = 10-14 yrs old, Vaccination coverage = 80%, 2-dose VE = 100%, 2-dose VD = Life

1-dose MACs would:
• Prevent a substantial additional number of cervical cancer cases and accelerate elimination vs routine vaccination
• Provide similar additional cervical cancer cases averted as a 2-dose MAC vaccination, if duration is greater than 20-30 years
• Herd immunity from 2-dose routine would mitigate the impact if 1-dose efficacy is lower

Age-standardized cervical cancer incidence rate, UN World Population prospect 2015; Cancers averted based on population UN prospect projections from 2018 to 2118
Number of doses needed to prevent 1 cervical cancer (NNV) through MAC vaccination vs 2-dose Routine

Country profile: INDIA

1-dose MACs would be a more efficient use of doses compared to 2-dose MAC

The NNV for 1-dose MACs is almost half 2-dose MACs, if duration is greater than 20-30 years

Time horizon=2018-2118; Cancers averted based on population UN prospect projections from 2018 to 2118; Girls-only, Routine = 9 yrs old, MACs = 10-14 yrs old, Vaccination coverage = 80%, 2-dose VE = 100%, 2-dose VD = Life
Impact of 1-dose vs 2-dose
4 country profiles

Girls-only, Start in 2023, Routine=9 yrs old, MACs=10-14 yrs old, Coverage=80%, 2-dose VE = 100%, 2-dose VD = Life

Conclusions are the same for the 4 country profiles
Question 2

What could be the population-level impact and efficiency of 1-dose vs 2-dose routine HPV vaccination?

Will depend on 1-dose vaccine efficacy and duration of protection
Impact 1-dose vs 2-dose routine vaccination

Country profile: INDIA

Girls-only, Start in 2023, Routine = 9 yrs old, MACs = 10-14 yrs old, Coverage = 80%, 2-dose VE = 100%, 2-dose VD = Life

1-dose routine vaccination reduces cervical cancers substantially, if duration is greater than 20-30 years

Under pessimistic assumptions of vaccine efficacy (85% VE or 30 years duration of protection), 1-dose would prevent 80-86% of the cervical cancer cases averted from 2-dose vaccination with half the number of doses.
Impact 1-dose vs 2-dose routine vaccination

Country profile: INDIA

Girls-only, Start in 2023, Routine = 9 yrs old, MACs = 10-14 yrs old, Coverage = 80%, 2-dose VE = 100%, 2-dose VD = Life

If 1-dose protection is shown to start to wane in the next 5 years, switching to 2-dose routine vaccination (with a 1-dose MAC with high coverage) would mitigate loss in cancer prevention.
Number of doses needed to prevent 1 cervical cancer (NNV) versus no vaccination

Country profile: INDIA

<table>
<thead>
<tr>
<th>VE = 100%, VD = Life</th>
<th>VE = 100%, VD = Life</th>
<th>VE = 85%</th>
<th>VD = 30 yrs</th>
<th>VD = 20 yrs</th>
<th>1-dose VD = 20 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-dose routine + 2-dose MAC</td>
<td>179</td>
<td>89</td>
<td>104</td>
<td>111</td>
<td>182</td>
</tr>
<tr>
<td>1-dose routine + 1-dose MAC</td>
<td>Session 6 HPV</td>
<td>SAGE meeting April 2022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1-dose routine would be a more efficient use of limited doses compared to 2-dose routine vaccination, if duration is greater than 20-30 years.

Time horizon = 2018-2118; Cancers averted based on population UN prospect projections from 2018 to 2118; Girls-only, Routine = 9 yrs old, MACs = 10-14 yrs old, Vaccination coverage = 80%, 2-dose VE = 100%, 2-dose VD = Life
Impact of 1-dose vs 2-dose routine vaccination

4 country profiles

Girls-only, Start in 2023, Routine=9 yrs old, MACs=10-14 yrs old, Coverage=80%, 2-dose VE = 100%, 2-dose VD = Life

Conclusions are the same for the 4 country profiles

Age-standardized cervical cancer incidence rate, UN World Population prospect 2015
Question 1: Should 1-dose HPV vaccine schedule be recommended for use in multi-age cohort (MAC) catch-up?

Multiple Age Cohort (MAC) vaccination with 1 dose would:

- Prevent a substantial additional number of cervical cancer cases and accelerate reductions in incidence (accelerate elimination) vs routine vaccination only
 - by protecting girls that would be aging out of the 9-14 age window

- Provide similar additional cervical cancer cases averted as a 2-dose MAC catch-up
 - Herd immunity from 2-dose routine would mitigate the impact if 1-dose efficacy is lower

- Would be a more efficient use of limited doses compared to 2-dose MAC

Currently we are losing girls who are aging out of the 10-14 year old vaccination window. For these girls, 1-dose vaccination is better than no vaccination, is a more efficient use of limited vaccine doses than 2-doses and likely will provide similar impact than 2-doses.
Question 2: Should 1-dose HPV vaccine schedule be recommended for routine vaccination?

1-dose routine HPV vaccination:

- reduces cervical cancers substantially, if duration is greater than 20-30 years
 - would prevent about at least 80-86% of the cervical cancer cases averted by 2-dose vaccination, under pessimistic assumptions (85% VE or 30 years duration of protection)

- would be a more efficient use of limited doses compared to 2-dose routine vaccination, if duration is greater than 20-30 years

Key issue: Duration of vaccine protection

If 1-dose protection is shown to wane within the next 5 years (at which time more than 15 years of follow-up will be available), switching to 2-dose routine vaccination (with a 1-dose MAC for 10-14 year olds with high coverage) could mitigate losses in cervical cancer prevention.

8. Conclusions are consistent with comparative modeling work conducted by Harvard, Université Laval and LSHTM (Burger et al. (under review)).
Summary of key evidence

Rakesh Aggarwal
SAGE member
Overview of key evidence on 1-dose HPV vaccination

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Results</th>
<th>Key study</th>
<th>GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunogenicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seroconversion</td>
<td>One, two and three doses similar (> 97%) (HPV2/9)</td>
<td>DORIS (RCT)</td>
<td>High</td>
</tr>
<tr>
<td>Antibody titers</td>
<td>Lower GMC with 1 dose (vs. 2 or 3 doses) (HPV2/9)</td>
<td>DORIS (RCT)</td>
<td>High</td>
</tr>
<tr>
<td>Persistence of antibody</td>
<td>GMTs stable up to 11 years, and comparable for 1, 2 and 3 doses (HPV2/4)</td>
<td>CVT, IARC (Post-RCT)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Protection in trials (vaccine efficacy)</td>
<td>VE for one-dose vs. 0 dose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Persistent infection (HPV 16/18)</td>
<td>• 97.5% (HPV2/9)</td>
<td>KEN SHE (RCT)</td>
<td>High</td>
</tr>
<tr>
<td>• Persistent infection</td>
<td>• 88.9% (HPV9)</td>
<td>KEN SHE (RCT)</td>
<td>High</td>
</tr>
<tr>
<td>(HPV 16/18/31/33/45/52/58)</td>
<td>• 94.2% (Similar to 2 & 3 doses) (HPV4)</td>
<td>IARC (Post-RCT)</td>
<td>Low</td>
</tr>
<tr>
<td>• Persistent infections (HPV 16/18)</td>
<td>• 82.1% (Similar to 2 & 3 doses) (HPV2)</td>
<td>CVT (Post-RCT)</td>
<td>Low</td>
</tr>
<tr>
<td>• Prevalent infections (HPV 16/18)</td>
<td>Up to 10 years against HPV16/18 (HPV4)</td>
<td>IARC (Post-RCT)</td>
<td>High</td>
</tr>
<tr>
<td>Duration of protection</td>
<td>Up to 11 years against HPV16/18 (HPV2)</td>
<td>CVT (Post-RCT)</td>
<td>High</td>
</tr>
</tbody>
</table>