International Nonproprietary Names (INN) for biological and biotechnological substances

(a review)

INN Working Document 05.179

Distr.: GENERAL ENGLISH ONLY 2012

International Nonproprietary Names (INN) for biological and biotechnological substances

(a review)

Programme on International Nonproprietary Names (INN)

Quality Assurance and Safety: Medicines

Essential Medicines and Health Products (EMP)

International Nonproprietary Names (INN) for biological and biotechnological substances

(a review)

© World Health Organization 2012

All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; email: bookorders@who.int).

Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html).

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

Printed by the WHO Document Production Services, Geneva, Switzerland

CONTENTS

0	. IN	TRODUCTION	. iv
1		HARMACOLOGICAL CLASSIFICATION OF BIOLOGICAL AND OTECHNOLOGICAL SUBSTANCES	1
2		URRENT STATUS OF EXISTING STEMS OR SYSTEMS FOR BIOLOGICAND BIOTECHNOLOGICAL SUBSTANCES	
	2.1.	Groups with respective stems	4
	2.2.	Groups with respective pre-stems	5
	2.3.	Groups with INN schemes	5
	2.4.	Groups without respective stems / pre-stems and without INN schemes	5
3		ENERAL POLICIES FOR BIOLOGICAL AND BIOTECHNOLOGICAL JBSTANCES	6
	3.1.	General policies for blood products	6
	3.2.	General policies for fusion proteins	6
	3.3.	General policies for gene therapy products	6
	3.4.	General policies for glycosylated compounds	7
	3.5.	General policies for immunoglobulins fractionated from plasma	8
	3.6.	General policies for monoclonal antibodies	8
	3.7.	General policies for non-glycosylated compounds	11
	3.8.	General policies for skin substitutes	. 11
	3.9.	General policies for transgenic products.	. 11

3.10.	General policies for vaccines	11
3.11.	General policies for cell therapy products	12
	IMMARY OF INN ASSIGNED TO BIOLOGICAL AND OTECHNOLOGICAL SUBSTANCES	13
4.1.	Antimicrobial, bactericidal permeability increasing polypeptides	13
4.2.	Antisense oligonucleotides	13
4.3.	Antithrombins	13
4.4.	Blood coagulation cascade inhibitors	14
4.5.	Blood coagulation factors	14
4.6.	Colony stimulating factors	15
4.7.	Enzymes	16
4.8.	Erythropoietin type blood factors	19
4.9.	Gene therapy products	19
4.10.	Growth factors	20
4.11.	Growth hormone (GH) derivatives	21
4.12.	Growth hormone antagonists	22
4.13.	Heparin derivatives including low molecular mass heparins	22
4.14.	Hirudin derivatives	22
4.15.	Pituitary hormone-release inhibiting peptides	22
4.16.	Insulins	23
4.17.	Interferons	24
4.18.	Interleukin receptor antagonists	24
4 19	Interleukin tyne substances	25

4.20.	Monoclonal antibodies	26
4.21.	Oxytocin derivatives	29
4.22.	Peptides and glycopeptides (for special groups of peptides see -actide, -pr-relin, -tocin)	
4.23.	Peptide vaccines / recombinant vaccines	31
4.24.	Pituitary / placental glycoprotein hormones	32
4.25.	Pituitary hormone-release stimulating peptides	33
4.26.	Receptor molecules, native or modified	33
4.27.	Synthetic polypeptides with a corticotropin-like action	34
4.28.	Thrombomodulins	34
4.29.	Toxins	35
4.30.	Vasoconstrictors, vasopressin derivatives	35
4.31.	Various	35
5. CU	TRRENT CHALLENGES	41
REFERI	ENCES	42
ANNEX	. 1	44
The li	st of INN for composite proteins published	44
ANNEX	<u> </u>	53
Trans	literation of Greek letters in English, French and Spanish	53
ANNEX	3	54
The p	revious naming scheme for monoclonal antibodies	54

0. INTRODUCTION

More than 50 years ago, WHO established the International Nonproprietary Name (INN) Expert Group / WHO Expert Committee on Specifications for Pharmaceutical Preparations, to assign nonproprietary names to medicinal substances, so that each substance would be recognized globally by a unique name. These INNs do not give proprietary rights, unlike a trade mark, and can be used freely as they are public property.

INNs have been assigned to biological products since the early days of the INN Programme. As well as many names for individual substances, animal insulin preparations were given an INN in Recommended list 3 in 1959. In the period up to 1980, names were assigned to antibiotics, synthetic peptides, hormones and other proteins. In names of compounds related by structure and / or function, specific letter groups, called stems, are included to aid recognition by health professionals. The *-actide* for synthetic polypeptides with a corticotrophin-like action is an example.

In 1982, the name *insulin human* was proposed for the recombinant protein identical to natural human insulin, and since then names have been assigned to a growing number of recombinant products. Within the INN Programme, names have not been assigned to natural human blood products or vaccines. For those groups of biological products, the WHO Expert Committee on Biological Standardization (ECBS) has been adopting the scientific names of the biological products within the definitions of respective requirements.

Since the time when *insulin human* became the first recommended INN (rINN) for a recombinant product, the range of biological / biotechnological products has increased in size and complexity. For example, new stems have been introduced for tissue plasminogen activators (*-plase*) among other groups. Analogues of recombinant glycosylated proteins produced in different cell systems have been classified using Greek letters as indicators in the sequence of product introduction: erythropoietin (*epoetin alfa*, *beta* and so on) and glycoprotein hormones (*follitropin*) are examples. In the 1990s, a systematic scheme for naming monoclonal antibodies was implemented, based on the stem *-mab*, which indicates the origin (mouse, human, etc) of the antibody and its intended use: tumour, immunomodulator and so on.

As a result of the scientific and technical developments currently taking place, new products of biotechnology and other biological products are being introduced and more products can be expected for the treatment or prevention of disease. Examples of such new products include recombinant blood products, transgenic products (human proteins expressed in animals or plants), products for gene therapy and novel vaccines.

As this area is becoming more and more complex and challenging, the INN Expert Group has requested the WHO-INN Secretariat to prepare a working document intended to summarize and review the past and present INN situation in this field.

This document, first published on the website of the INN Programme in 2006, therefore presents an inventory of the policy decisions taken by the INN Expert Group during all these years of change, and of the names assigned to biological and biotechnological substances. Considering the potential for further developments in the field of biologicals, this review is intended to be a *living document* which will be regularly updated to include new policies, and future INNs assigned.

Comments and suggestions from all interested parties are most welcome and will be presented to the INN Expert Group for their consideration and for possible incorporation in future updates of this review.

You are reading the current updated version, also available as pdf-copy at:

http://www.who.int/medicines/services/inn/publication/en/index.html.

1. PHARMACOLOGICAL CLASSIFICATION OF BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES (1)

Alimentary tract and metabolism

insulins (see item 4.16).

Anti-infectives

antimicrobial, bactericidal permeability increasing polypeptides (see item 4.1).

Antineoplastics

peptide vaccines / recombinant vaccines (see item 4.23) toxins (see item 4.29).

Blood and agents acting on the haemopoietic system

antithrombins (see item 4.3)

blood coagulation cascade inhibitors (see item 4.4)

blood coagulation factors (see item 4.5)

erythropoietin type blood factors (see item 4.8)

heparin derivatives including low molecular mass heparins (see item 4.13)

hirudin derivatives (see item 4.14)

thrombomodulins (see item 4.28).

Immunomodulators and immunostimulants

```
colony stimulating factors (see item 4.6)
interferons (see item 4.17)
interleukin receptor antagonists (see item 4.18)
interleukin type substances (see item 4.19)
monoclonal antibodies (see item 4.20)
receptor molecules, native or modified (see item 4.26).
```

Hormones, hormone antagonists, hormone-release stimulating peptides or hormone-release inhibiting peptides (excluding insulins)

```
growth hormone (GH) derivatives (see item 4.11)
growth hormone antagonists (see item 4.12)
oxytocin derivatives (see item 4.21)
pituitary / placental glycoprotein hormones (see item 4.24)
pituitary hormone-release stimulating peptides (see item 4.25)
synthetic polypeptides with a corticotropin-like action (see item 4.27)
vasoconstrictors, vasopressin derivatives (see item 4.30).
```

Various

```
antisense oligonucleotides (see item 4.2)
enzymes (see item 4.7)
gene therapy products (see item 4.9)
growth factors (see item 4.10)
```

peptides and glycopeptides (for special groups of peptides see *-actide* (see item 4.27), *-pressin* (see item 4.30), *-relin* (see item 4.25), *-tocin* (see item 4.21)) (see item 4.22).

2. CURRENT STATUS OF EXISTING STEMS OR SYSTEMS FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES^{(1) (2) (3) (4) (5) (6) (7)}

2.1. Groups with respective stems

Name of the group	Stem
antisense oligonucleotides	-rsen
blood coagulation cascade inhibitors	-cogin
blood coagulation factors	-cog
colony stimulating factors	-stim
Enzymes	-ase
erythropoietin type blood factors	-poetin
growth factors	-ermin
growth hormone derivatives	som-
heparin derivatives including low molecular mass heparins	-parin
hirudin derivatives	-irudin
pituitary hormone-release inhibiting peptides	-relix
interleukin receptor antagonists	-kinra
interleukin type substances	-kin
monoclonal antibodies	-mab
oxytocin derivatives	-tocin
peptides and glycopeptides (for special groups of peptides see -actide, -pressin, -relin, -tocin)	-tide
pituitary hormone-release stimulating peptides	-relin
receptor molecules, native or modified (a preceding infix should designate the target)	-cept
synthetic polypeptides with a corticotropin-like action	-actide
vasoconstrictors, vasopressin derivatives	-pressin

2.2. Groups with respective pre-stems

Name of the group	Pre-stem
aptamers, classical and mirror ones	-apt-
antimicrobial, bactericidal permeability increasing polypeptides	-ganan
Neurotrophins	-neurin

2.3. Groups with INN schemes

Name of the group
Antithrombins
gene therapy products
Insulins
Interferons
pituitary / placental glycoprotein hormones

2.4. Groups without respective stems / pre-stems and without INN schemes

Name of the group
growth hormone antagonists
Thrombomodulins
Toxins

3. GENERAL POLICIES FOR BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES

3.1. General policies for blood products ⁽⁴⁾

- INNs have not been assigned to natural human blood products.
- Many natural blood products have well-established names, so the recombinant version should have a distinctive name reflecting as much as possible the established name used in the field.
- It is essential to add "activated" to the name of the blood product when this is presented for therapeutic use in its activated form.

3.2. General policies for fusion proteins^{1 (4)}

- INNs have been assigned to some fusion proteins. If a stem exists for one or the other part of the fusion protein, this stem should be brought into the name. This allows the constant part of a fusion protein to be recognized in the name.
- At present it is considered unnecessary to indicate that the product is a fusion product within the name, but this position may need to be reviewed in the future.

3.3. General policies for gene therapy products (2)

In 2005, the two-word nomenclature scheme for gene therapy products was formally adopted by the members of the INN Expert Group designated to deal with the selection of nonproprietary names. The 2012 updated scheme is shown in Table 1.

6

¹ The list of INN for composite proteins published is given in Annex 1, including some fusion proteins.

Table 1 Two-word scheme for gene therapy products (updated in 2012)

	prefix	infix	suffix
word 1 (gene component)	random to contribute to euphonious and distinctive name e.g. al-; bet-; val-	to identify the gene using, when available, existing infixes for biological products or using similar infix as for the protein for which the gene codes. e.gcima-: cytosine deaminase -ermin-: growth factor -kin-: interleukin -lim-: immunomodulator -lip-: human lipoprotein lipase -mul-: multiple gene -stim-: colony stimulating factor -tima-: thymidine kinase -tusu-: tumour suppression	-(a vowel)gene e.g(o)gene
word 2 (vector component)	random to contribute to euphonious and distinctive name	e.gadeno-: adenovirus -cana-: canarypox virus -foli-: fowlpox virus -herpa-: herpes virus -lenti-: lentivirus -morbilli-: paramyxoviridae morbillivirus -parvo-: adeno-associated virus (parvoviridae dependovirus) -retro-: other retrovirus -vaci-: vaccinia virus	-vec (non-replicating viral vector) -repvec (replicating viral vector)
			-plasmid (plasmid vector)

In the case of non-plasmid naked DNA products, there is no need for a second word in the name.

3.4. General policies for glycosylated compounds ⁽⁸⁾

For glycoproteins / glycopeptides

- For groups identified with a stem, e.g. for erythropoetins: *-poetin*, differences in the amino acid chain are indicated by using a random prefix and differences in the glycosylation pattern are indicated by another designator expressed by a Greek letter² spelt in full and added as a second word to the name (e.g. epoetin alfa (66), darbepoetin alfa (85) see item 4.8).
- For blood coagulation factors obtained by recombinant biotechnology, the differences in the glycosylation pattern are indicated by a Greek letter spelt in full and added as a second word to the name (e.g. eptacog alfa (activated) (77), octocog alfa (73)); when the amino acid sequence differs from the natural product this is indicated by using a random prefix (e.g. beroctocog alfa (98)); see item 4.5.
- Similarly, for enzymes identified with a stem -ase obtained by recombinant biotechnology and differing in the amino acid chain, these differences are indicated by using a random prefix and differences in the glycosylation pattern are indicated by a Greek letter spelt in full and added as a second word to the name (e.g. alglucosidase alfa (91), bucelipase alfa (95)); see item 4.7.
- The Greek letters should be used in the Greek alphabetical order (see Annex 2).

3.5. General policies for immunoglobulins fractionated from plasma (9) (10)

Not to select an INN for immunoglobulins fractionated from plasma is the current policy.

The "systematic" or descriptive name is essential since the prescriber must know all the information conveyed by it and there is no benefit in assigning an INN from which it will not be readily apparent.

General policies for monoclonal antibodies $^{(1)}$ $^{(3)}$ $^{(11)3}$ 3.6.

INN for monoclonal antibodies (mAbs) are composed of a prefix, a substem A, a substem B and a suffix.

³ It contains the revised naming scheme for monoclonal antibodies; the previous naming scheme for

monoclonal antibodies is given in Annex 3.

² The transliteration of Greek letters in English, French and Spanish is given in Annex 2.

- The common stem for mAbs is -mab, placed as a suffix.
- The stem -mab is to be used for all products containing an immunoglobulin variable domain which binds to a defined target.
- Substem B indicates the species on which the immunoglobulin sequence of the mAb is based (shown in Table 2).

Table 2 Substem B for the species

а	Rat
axo (pre-sub-stem)	rat-mouse
e	Hamster
i	Primate
0	Mouse
и	Human
xi	chimeric
-xizu-	chimeric-humanized
zu	Humanized

The distinction between chimeric and humanized antibodies is as follows:

Chimeric: A chimeric antibody is one of which both chain types are chimeric as a result of antibody engineering. A chimeric chain is a chain that contains a foreign variable domain (V-D-J-REGION) (originating from one species other than human, or synthetic) linked to a constant region (C-REGION) of human origin.

Humanized: A humanized antibody is one of which both chain types are humanized as a result of antibody engineering. A humanized chain is a chain in which the complementarity determining regions (CDR) of the variable domains are foreign (originating from one species other than human, or synthetic) whereas the remaining chain is of human origin. By extension an antibody is described as humanized if more recent protocoles were used for the humanization.

The –*xizu*- infix is used for an antibody having both chimeric and humanized chains.

The -axo- infix is used for an antibody having both rat and mouse chains.

• Substem A indicates the target (molecule, cell, organ) class (shown in Table 3).

Table 3 Substem A for target class

-b(a)-	Bacterial
-c(i)-	cardiovascular
-f(u)-	Fungal
-k(i)-	interleukin
-l(i)-	immunomodulating
-n(e)- (under discussion	Neural
-s(o)-	Bone
-tox(a)-	Toxin
<i>-t(u)-</i>	Tumour
-v(i)-	Viral

In principle, a single letter, e.g. -b- for bacterial is used as substem A. Whenever substem B starts with a consonant (e.g. x or z), to avoid problems in pronunciation, an additional vowel indicated in the table, e.g. -ba- is inserted.

Prefix

The prefix should be random i.e.. the only requirement is to contribute to a euphonious and distinctive name.

Second word

If the monoclonal antibody is conjugated to another protein or to a chemical (e.g. chelator), identification of this conjugate is accomplished by use of a separate, second word or acceptable chemical designation. For instance, for mAbs conjugated to a toxin, the suffix *-tox* is used in the second word.

If the monoclonal antibody is radiolabelled, the radioisotope is listed first in the INN, e.g. technetium (^{99m}Tc) $nofetumomab\ merpentan$ (81).

The prefix *peg*- can be used for pegylated mAbs, but this should be avoided if it leads to over-long INN. In most cases, it is best to adopt two-word INN for

pegylated mAbs, with the first word describing the mAb and the second being *pegol* or a related designation.

3.7. General policies for non-glycosylated compounds (8)

For proteins / peptides:

- Identification of the group with a stem, e.g. for hirudin analogues:-*irudin*, and indication of differences in the amino acid chain by using a random prefix (e.g. *bivalirudin* (72)).
- Identification of the group with a word, e.g. insulin, and indication of differences in the composition of the amino acid chain as a second element of the name (e.g. *insulin argine* (58)).

3.8. General policies for skin substitutes (4)

The products within this system are made of cells within a matrix, and skin substitutes can be considered to be engineered tissue and thus fall outside the scope of the INN system.

3.9. General policies for transgenic products ⁽⁴⁾

- If an INN already exists, the same name should be used for the transgenic product, qualified in some way to identify that this product is transgenic.
- A similar system to that used for glycosylated recombinant products is suggested to differentiate new or additional sources of the same substance, and the source of the substance should be included in the definition of the INN.

3.10. General policies for vaccines (4) (5) (6) (7)

 At present, vaccines are not included within the INN system, but names are assigned through recommendations of the Expert Committee on Biological Standardization and through the pharmacopoeial monograph.

- During the INN Consultation in 1993, it was agreed that the prerequisite for an INN application for a recombinant vaccine⁴ would be fulfilled if the manufacturer was able to provide all information outlined in the guidelines entitled Definition of INNs for Substances Prepared by Biotechnology (WHO / Pharm S / Nom 1348⁽¹²⁾).
- During the INN Consultation in 1998, following discussion on recombinant viruses, the experts agreed not to attempt to name live viruses.
- Another approach in vaccine technology seems to be the development of peptide vaccines⁵ (epitopes involved in immune response formation): since these peptides are chemically well-defined, their naming will be less problematic.

3.11. General policies for cell therapy products

During the 55th INN Consultation in 2012, the INN Expert Group decided in principle to name some cell therapy products. A possible INN naming scheme for cell therapy products is currently under development.

_

⁴ The definition of recombinant vaccines is given in item 4.23.

⁵ The definition of peptide vaccines is given in item 4.23.

4. SUMMARY OF INN ASSIGNED TO BIOLOGICAL AND BIOTECHNOLOGICAL SUBSTANCES^{(1) (3) (7) (8) (13) (14) (15) (16)}

(17) (18) (19) (20) (21)

4.1. Antimicrobial, bactericidal permeability increasing polypeptides

The pre-stem for antimicrobial, bactericidal permeability increasing polypeptides is *-ganan*.

iseganan $(85)^6$, omiganan (89), pexiganan (78).

4.2. Antisense oligonucleotides

The common stem for antisense oligonucleotides is -rsen.

afovirsen (97), aganirsen (103), alicaforsen (97), anivamersen (105), aprinocarsen (97), beclanorsen (101), cenersen (97), custirsen (99), drisapersen (106), eteplirsen (103), fomivirsen (97), gataparsen (103), mipomersen (100), miravirsen (101), oblimersen (97), radavirsen (106), trabedersen (98), trecovirsen (97).

4.3. Antithrombins

antithrombin III (60), antithrombin alfa (93) (Rec. Glycoprotein (432aa) from transgenic goats), antithrombin gamma (107).

13

⁶ The numbers in parentheses indicate the Proposed list number.

4.4. Blood coagulation cascade inhibitors

The common stem for blood coagulation cascade inhibitors is *-cogin*.

drotrecogin alfa (activated) (86), pegnivacogin (106), taneptacogin alfa (90), tifacogin (78).

4.5. Blood coagulation factors

The common stem for blood coagulation factors is -cog.

The sub-stems -eptacog, -octocog, -nonacog/-trenonacog and -tridecacog have been selected up to date for recombinant blood coagulation factors.

A prefix will be necessary if the amino acid sequence does not match that of the naturally occurring material.

In accordance with the general policy, *alfa*, *beta*, etc, will be added for the glycoproteins (see item 3.4 - general policies for glycosylated compounds).

When the additional statement "activated" is needed, e.g. for the blood coagulation factor VIIa, it should be spelt out in full and added in parentheses after the name.

blood coagulation factor VII: -eptacog

eptacog alfa (activated) (77), eptacog alfa pegol (activated) (101), vatreptacog alfa (activated) (98)

blood factor VIII: -octocog

beroctocog alfa (98), moroctocog alfa (72), octocog alfa (73), simoctocog alfa (104), turoctocog alfa (104)

blood factor IX: *-nonacog* (with Ala at the position 148 (Ala-alloform))

nonacog alfa (77), nonacog beta pegol (104)

-trenonacog (with Thr at the position 148 (Thr-alloform))

```
trenonacog alfa (107)

blood coagulation factor XIII: -tridecacog

catridecacog (99)

recombinant von Willebrand factor (vWF): -vonicog

vonicog alfa (102).
```

4.6. Colony stimulating factors

The common stem for colony stimulating factors is -stim.

```
ancestim (79) (cell growth factor), garnocestim (86) (immunomodulator), pegacaristim (80) (megakaryocyte growth factor), romiplostim (97) (thrombopoietin receptor (MPL) agonist)
```

combination of two different types of colony stimulating factors: -distim

leridistim (80), milodistim (75)

granulocyte colony stimulating factor (G-CSF) type substances: -grastim

balugrastim (107), empegfilgrastim (107), filgrastim (64), lenograstim (64), lipegfilgrastim (107), nartograstim (66), pegfilgrastim (86), pegnartograstim (80)

granulocyte macrophage colony stimulating factor (GM-CSF) types substances: -gramostim

ecogramostim (62), molgramostim (64), regramostim (65), sargramostim (66)

macrophage stimulating factors (M-CSF) type substances: -mostim

cilmostim (71), lanimostim (91), mirimostim (65)

interleukin-3 analogues and derivatives: -plestim

daniplestim (76), muplestim (74).

4.7. Enzymes

The common stem for enzymes, in general, is *-ase*. Sub-stems are referring to the activity of the substances.

proteinase:

with -ase suffix:

brinase (22), calaspargase pegol (105), kallidinogenase (22), ocrase (28), pegaspargase (64), promelase (47), rasburicase (82), serrapeptase (31), sfericase (40), streptokinase (6), urokinase (48), urokinase alfa (77)

without -ase suffix:

batroxobin (29), bromelains (18), chymopapain (26), chymotrypsin (10), defibrotide (44), fibrinolysin (human) (10), sutilains (18)

Lipase: -lipase

bucelipase alfa (95), burlulipase (107), rizolipase (22), sebelipase alfa (107) enzymes with superoxide dismutase activity: -dismase

- ledismase (70), sudismase (58)
- isomerase (belongs to this group but in which the preferred stem has not been used)

orgotein (31), pegorgotein (72)

plasminogen activator combined with another enzyme: -diplase

amediplase (79)

tissue-type-plasminogen activators: -teplase

alteplase (73), desmoteplase (80), duteplase (62), lanoteplase (76), monteplase (72), nateplase (73), pamiteplase (78), reteplase (69), silteplase (65), tenecteplase (79)

anistreplase (59) (belongs to this group but in which the preferred stem has not been used)

urokinase-type-plasminogen activators: -uplase

nasaruplase (76), nasaruplase beta (86), saruplase (76)

others:

agalsidase alfa (84): human alpha-galactosidase isoenzyme A, isolated from human cell line, clone RAG 001, glycoform α

agalsidase beta (84): α -galactosidase (human clone λ AG¹⁸ isoenzyme A subunit protein moiety reduced), glycoform β

alfimeprase (85): [3-L-serine]fibrolase-(3-203)-peptide (fibrolase : fibrinolytic enzyme isolated from *Agkistrodon contrix contrix* venom)

alglucerase (68): glucosylceramidase (human placenta isoenzyme protein moiety reduced)

alglucosidase alfa (91): human lysosomal prepro-α-glucosidase-(57-952)-peptide 199-arginine-223-histidine variant

asfotase alfa (104): tissue-nonspecific alkaline phosphatase- IgG₁ fusion protein;human tissue-nonspecific isozyme alkaline phosphatase (AP-TNAP, EC=3.1.3.1) fusion protein with leucyl-lysyl-human immunoglobulin G1 Fc region {(6-15)-H-CH2-CH3 of IGHG1*03} fusion protein with aspartyl-isoleucyl-deca(aspartic acid), dimer (493-493':496-496')-bisdisulfide

condoliase (106): endolyase, chondroitin ABC (C-ABC). glycosaminoglycan lyase chondroitin ABC endolyase 1 (chondroitinase ABC) *Proteus vulgaris*

crisantaspase (107): L-asparaginase (EC 3.5.1.1, L-asparagine amidohydrolase) *Erwinia chrysanthemi* tetramer α4

dornase alfa (70): deoxyribonuclease (human clone 18-1 protein moiety)

epafipase (85): 2-acetyl-1-alkyl-*sn*-glycero-3-phosphocholine deacetylase-(6-400)-peptide(human)

eufauserase (84): broad spectrum serine-protease enzyme, extracted from the Antartic krill (*Euphausia superba*)

galsulfase (92): N-acetylgalactosamine 4-sulfatase (human CSL4S-342 cell)

glucarpidase (92): recombinant glutamate carboxypeptidase (carboxypeptidase G2)

hyalosidase (50): hyaluronoglucosaminidase or E.C. 3.2.1.35

hyaluronidase (1): enzymes of various origins which depolymerize hyaluronic acid

idursulfase (90): α-L-iduronate sulfate sulfatase

idursulfase beta (106): iduronate 2-sulfatase (α-L-iduronate sulfate sulfatase), human proenzyme produced in CHO cells (glycoform beta)

imiglucerase (72): 495-L-histidineglucosylceramidase (human placenta isoenzyme protein moiety)

laronidase (86): 8- L-histidine-α-L-iduronidase (human)

pegademase (63): adenosine deaminase, reaction product with succinic anhydride, esters with polyethylene glycol monomethyl ether

The source of the product should be indicated

pegloticase (98): tetramer α_4 of des-(1-5)-[6-threonine,45-threonine, 290-lysine, 300-serine]uricase (EC 1.7.3.3, urate oxidase) from *Sus scrofa* (porcine), non acetylated, of which some of the lysine 6-amine residues are engaged in a carbamate linkage with a monomethylic ether of polyoxyethylene (macrogol)

pegadricase (105): pegylated Urate Oxidase from Candida utilis, [198-threonine(S>T)]uricase (EC 1.7.3.3, urate oxidase) Pichia jadinii (Yeast) (Candida utilis) tetramer, 6-amino group of an average of 3 lysine residues, mostly in position 16, 19, and 85 of each monomer, are amidified with α-(3-carboxypropanoyl)-ω-methoxypoly(oxyethylene)

penicillinase (10): an enzyme obtained by fermentation from cultures of B. Cereus

ranpirnase (81): ribonuclease (Rana pipiens)

senrebotase (107): L-methionylglycyl-L-seryl-des-(445-glycine,446-L-tyrosine)-[2-L-glutamic acid,432,442,444,447-tetra-L-aspartic acid]botulinum neurotoxin A precursor 27-L-alanine variant light chain

(433-41')-disulfide with [14-L-arginine,15-L-lysine]human nociceptin fusion protein with L-alanyl-L-leucyl-L-alanyltris(tetraglycyl-L-seryl)-[3-L-valine,4-L-leucine,5-L-glutamine-418-L-leucine,419-L-aspartic acid]botulinum neurotoxin A heavy chain-(1-419)-peptide

streptodornase (6): enzyme obtained from cultures of various strains of Streptococcus hemolyticus and capable of hydrolysing desoxyribonucleoproteins

taliglucerase alfa (101): L-glutamyl-L-phenylalanyl-[495(497)-L-histidine(R>H)]human glucosylceramidase (beta-glucocerebrosidase) peptide with L-aspartyl-L-leucyl-L-leucyl-L-valyl-L-aspartyl-L-threonyl-L-methionine,glycosylated peptide 1-506

tilactase (50): β -D-galactosidase or EC 3.2123

velaglucerase alfa (98): human glucosylceramidase (EC 3.2.1.45 or beta-glucocerebrosidase), glycoform α.

4.8. Erythropoietin type blood factors

The common stem for erythropoietin type blood factors is *-poetin*.

In the case of erythropoietins, it was decided to select *epoetin* together with a Greek letter to differentiate between compounds of the same amino acid sequence as human erythropoietin which vary in the glycosylation pattern (see item 3.4 - general policies for glycosylated compounds).

Substances with different amino acid sequences will be named using the *-poetin* stem and a random prefix.

darbepoetin alfa (85), epoetin alfa (66), epoetin beta (62), epoetin gamma (67), epoetin delta (85), epoetin epsilon (72), epoetin zeta (95), epoetin theta (95), epoetin kappa (97), epoetin omega (73).

4.9. Gene therapy products

alferminogene tadenovec (95), alipogene tiparvovec (99), amolimogene bepiplasmid (98), beperminogene perplasmid (95), contusugene ladenovec (97), golnerminogene pradenovec (101), riferminogene pecaplasmid (100), rilimogene galvacirepvec (107), rilimogene glafolivec (107), sitimagene ceradenovec (97), taberminogene vadenovec (100), talimogene laherparepvec (104), tipapkinogene sovacivec (102), velimogene aliplasmid (97), vocimagene amiretrorepvec (107).

4.10. Growth factors

The common stem for growth factors is -ermin.

Sub-stems allow distinction between the various types of growth factors.

INNs for tumour necrosis factors (TNF) are also classified under the stem *-ermin*.

```
vascular endothelial growth factors: -bermin
telbermin (85)
epidermal growth factors: -dermin
murodermin (63), nepidermin (97)
fibroblast growth factors: -fermin
ersofermin (66), palifermin (88), repifermin (82), sprifermin (105),
trafermin (74), velafermin (94)
leukaemia-inhibiting factors: -filermin
emfilermin (82)
tumour necrosis factors: -nermin
ardenermin (88), dulanermin (99), plusonermin (73), sonermin (68),
tasonermin (78)
platelet-derived growth factors: -plermin
becaplermin (74)
```

```
insulin-like growth factors: -sermin

mecasermin (66), mecasermin rinfabate (92)

transforming growth factors: -termin

cetermin (74), liatermin (81)

bone morphogenetic proteins: -otermin

avotermin (77), dibotermin alfa (89), eptotermin alfa (92), radotermin (92)

others:

dapiclermin (93) (modified ciliary neurotrophic factor (CNTF)).
```

4.11. Growth hormone (GH) derivatives

The common stem for growth hormone derivatives is som-.

human growth hormone derivatives:

somatrem (54), somatropin (74), somatropin pegol (103)

For substances other than human, suffixes are added to indicate the species specificity of the structure.

```
bovine-type substances: -bove
somagrebove (63), somavubove (63), sometribove (74), somidobove (58)

porcine-type substances: -por
somalapor (62), somenopor (62), somfasepor (66), sometripor (75)

salmon-type substances: -salm
somatosalm (69)
```

others (growth hormone related peptides):

somatorelin (57) (pituitary hormone-release stimulating peptides, see item 4.25), somatostatin (46) (growth hormone release inhibitor).

4.12. Growth hormone antagonists

pegvisomant (82).

4.13. Heparin derivatives including low molecular mass heparins

The common stem for heparin derivatives including low molecular mass heparins is *-parin*.

ardeparin sodium (68), adomiparin sodium (104), bemiparin sodium (75), certoparin sodium (70), dalteparin sodium (77), deligoparin sodium (89), enoxaparin sodium (77), heparin sodium (54), livaraparin calcium (86), minolteparin sodium (74), nadroparin calcium (78), parnaparin sodium (77), reviparin sodium (78), semuloparin sodium (99), sevuparin sodium (106), tafoxiparin sodium (102), tinzaparin sodium (77).

4.14. Hirudin derivatives

The common stem for hirudin derivatives is -irudin.

bivalirudin (72), desirudin (76), lepirudin (76), pegmusirudin (77).

4.15. Pituitary hormone-release inhibiting peptides

The common stem for pituitary hormone-release inhibiting peptides is *-relix*.

abarelix (78), cetrorelix (66), degarelix (86), detirelix (56), ganirelix (65), iturelix (79), ozarelix (94), prazarelix (81), ramorelix (69), teverelix (78).

4.16. Insulins

Up to now, the insulin derivatives have been named using the two-word approach. The compounds named represent a structure with an additional amino acid, such as *insulin argine* (58), or represent modifications of the amino acid sequence, i.e. *insulin aspart* (76).

biphasic insulin injection (16), compound insulin zinc suspension (06), dalanated insulin (104), globin zinc insulin injection (06), insulin argine (58), insulin aspart (76), insulin defalan (37), insulin degludec (101), insulin detemir (80), insulin glargine (76), insulin glulisine (84), insulin human (48), insulin lispro (72), insulin peglispro (107), insulin tregopil (103), insulin zinc suspension (amorphous) (04), insulin zinc suspension (crystalline) (04), isophane insulin (04), neutral insulin injection (15), protamine zinc insulin injection (06)

argine: B30-yl-L-arginyl-L-arginine

aspart: [B28-L-aspartic acid]

dalanated: des-B30-alanine

defalan: des-B1-phenylalanine

degludec: $N^{6, B29}$ -[N-(15-carboxypentadecanoyl)-L- γ -glutamyl]-des-30B-L-threonine

detemir: $N^{6,B29}$ -tetradecanoyl-des-B30-L-threonine

glargine: [A21-glycine], B30-yl-L-arginyl-L-arginine

glulisine: [B3-lysine, B29-glutamic acid]

lispro: [B28-L-lysine, B29-L-proline]

tregopil: $N^{6,B29}$ -(4,7,10,13-tetraoxatetradecanoyl).

4.17. Interferons

Interferon was published as an INN in 1962 with a general definition based on the origin and activity, e.g. "a protein formed by the interaction of animal cells with viruses capable of conferring on animal cells resistance to virus infection".

The name was revised in the 1980s when human interferon and its variations alfa, beta and gamma were produced by recombinant biotechnology. The INN Expert Group would have preferred to replace the old INN interferon by alfaferon, betaferon and gammaferon; however, this approach could not be adopted as these names had already been registered as trade marks. The system adopted was thus to take interferon alfa, interferon beta and interferon gamma, and to provide, when necessary, for further distinction by additional numbers, or in the case of mixtures, by additional codes. Additional Arabic numbers can be used to distinguish subspecies which differ significantly in primary amino acid sequence, but are still considered to belong to one of the primary groups e.g. Interferon alfa-1, interferon alfa-2. Small (lower case) letters are used to subdivide such groups further on the basis of less significant differences like one, two or three amino acid differences or post translational modifications, including glycosylation e.g. Interferon alfa-2a, Interferon alfa-2b, Interferon beta-1a, Interferon beta-1b.

albinterferon alfa-2b (99), cepeginterferon alfa-2b (105), interferon alfa (73), interferon alfacon-1 (77), interferon beta (73), interferon gamma (73), peginterferon alfa-2a (84), peginterferon alfa-2b (84), peginterferon lambda-1a (105).

4.18. Interleukin receptor antagonists

The common stem for interleukin receptor antagonists is -kinra.

```
interleukin-1 (IL-1) receptor antagonists: -nakinra anakinra (72)
interleukin-4 (IL-4) receptor antagonists: -trakinra pitrakinra (87).
```

4.19. Interleukin type substances

The common stem for interleukin type substances is -kin.

In accordance with general policy for naming glycosylated proteins (see item 3.4), it was agreed to publish the INNs for glycosylated interleukins with alfa, beta.

```
interleukin-1 (IL-1) analogues and derivatives: -nakin
       interleukin-1α analogues and derivatives: -onakin
       pifonakin (77)
       interleukin-1β analogues and derivatives: -benakin
       mobenakin (72)
interleukin-2 (IL-2) analogues and derivatives: -leukin
adargileukin alfa (89), aldesleukin (63), celmoleukin (65), denileukin
diftitox (78), pegaldesleukin (74), teceleukin (67), tucotuzumab celmoleukin
(95)
interleukin-3 (IL-3) analogues and derivatives: -plestim (belongs to this
group but in which the preferred stem has not been used)
daniplestim (76), muplestim (74)
interleukin-4 (IL-4) analogues and derivatives: -trakin
binetrakin (82)
interleukin-6 (IL-6) analogues and derivatives: -exakin
atexakin alfa (72)
interleukin-8 (IL-8) analogues and derivatives: -octakin
emoctakin (74)
interleukin-10 (IL-10) analogues and derivatives: -decakin
ilodecakin (81)
```

```
interleukin-11 (IL-11) analogues and derivatives: -elvekin

oprelvekin (76)

interleukin-12 (IL-12) analogues and derivatives: -dodekin

edodekin alfa (79)

interleukin-13 (IL-13) analogues and derivatives: -tredekin

cintredekin besudotox (92)

a recombinant human interleukin-18 (IL-18) with 157 amino acids:

iboctadekin (92)

a recombinant human interleukin-21: -enicokin

denenicokin (99)

neurotrophins (interleukin-78, brain derived neurotropic factor): -neurin
(pre-stem)

abrineurin (84).
```

4.20. Monoclonal antibodies

The common stem for monoclonal antibodies is *-mab*.

INNs for monoclonal antibodies alphabetically by origin:

-axomab (pre-sub-stem, rat-murine hybrid)

catumaxomab (93), ertumaxomab (93)

-omab (mouse origin)

abagovomab (95), afelimomab (80), altumomab (80), anatumomab mafenatox (86), arcitumomab (74), bectumomab (81), besilesomab (92), biciromab (66), blinatumomab (100), capromab (80), detumomab (80), dorlimomab aritox (66), edobacomab (80), edrecolomab (74), elsilimomab (89), enlimomab (80), enlimomab pegol (77), epitumomab (97), epitumomab cituxetan (89), faralimomab (81), gavilimomab (84), ibritumomab tiuxetan

(86), igovomab (86), imciromab (66), inolimomab (80), lemalesomab (86), maslimomab (66), minretumomab (80), mitumomab (82), moxetumomab pasudotox (102), nacolomab tafenatox (80), naptumomab estafenatox (96), nerelimomab (81), odulimomab (81), oregovomab (86), racotumomab (100), satumomab (81), solitomab (106), sulesomab (86), taplitumomab paptox (84), technetium (99m Tc) fanolesomab (86), technetium (99m Tc) nofetumomab merpentan (81), technetium (99m Tc) pintumomab (86), telimomab aritox (66), tenatumomab (99), tositumomab (80), vepalimomab (80), zolimomab aritox (80)

-umab (human origin)

actoxumab (107), adalimumab (85), adecatumumab (90), alirocumab (107), atinumab (104), atorolimumab (80), belimumab (89), bertilimumab (88), bezlotoxumab (107), briakinumab (101), brodalumab (105), canakinumab (97), carlumab (104), cixutumumab (100), conatumumab (99), daratumumab (101), denosumab (94), drozitumab (103), duligotumab (107), efungumab (95), enoticumab (107), exbivirumab (91), fasinumab (107), fezakinumab (101), figitumumab (100), flanvotumab (106), foralumab (103), foravirumab (100), fresolimumab (101), fulranumab (104), ganitumab (103), gantenerumab (97), glembatumumab (102), golimumab (91), icrucumab (104), inclacumab (106), intetumumab (101), ipilimumab (94), iratumumab (94), lerdelimumab (86), lexatumumab (95), libivirumab (91), lirilumab (107), lucatumumab (98), mapatumumab (93), mavrilimumab (102), metelimumab (88), morolimumab (79), namilumab (104), narnatumab (105), nebacumab (66), necitumumab (100), nivolumab (107), ofatumumab (93), olaratumab (103), orticumab (107), oxelumab (105), panitumumab (96), panobacumab (100), patritumab (106), placulumab (107), pritumumab (89), radretumab (104), rafivirumab (100), ramucirumab (100), raxibacumab (92), regavirumab (80), rilotumumab (101), robatumumab (100), roledumab (103), sarilumab (106), secukinumab (102), sevirumab (66), sifalimumab (104), sirukumab (105), stamulumab (95), tabalumab (105), teprotumumab (101), tralokinumab (102), tremelimumab (97), tuvirumab (66), urelumab (104), ustekinumab (99), vesencumab (104), votumumab (80), zalutumumab (93), zanolimumab (92), ziralimumab (84)

-ximab (chimeric origin)

abciximab (80), amatuximab (104), basiliximab (81), bavituximab (95), brentuximab vedotin (103), cetuximab (82), clenoliximab (77), ecromeximab (87), ensituximab (103), futuximab (107), galiximab (89), girentuximab (101), indatuximab ravtansine (105), infliximab (77), iodine (1241) girentuximab (101), keliximab (81), lumiliximab (90), pagibaximab (93), priliximab (80), rituximab (77), siltuximab (100), teneliximab (87), ublituximab (104), vapaliximab (87), volociximab (93), zatuximab (107)

-xizumab (chimeric-humanized origin)

otelixizumab (99)

-zumab (humanized origin)

alacizumab pegol (98), alemtuzumab (83), anrukinzumab (98), apolizumab (87), aselizumab (88), bapineuzumab (93), benralizumab (102), bevacizumab (86), bivatuzumab (86), blosozumab (105), cantuzumab mertansine (105), cantuzumab ravtansine (105), caplacizumab (106), cedelizumab (81), certolizumab pegol (97), citatuzumab bogatox (99), clazakizumab (107), yttrium (^{90}Y) clivatuzumab tetraxetan (102), crenezumab (105), dacetuzumab (98), daclizumab (78), dalotuzumab (107), demcizumab (107), eculizumab (87), efalizumab (85), elotuzumab (100), enavatuzumab (104), enokizumab (104), epratuzumab (82), erlizumab (84), etaracizumab (99), etrolizumab (104), farletuzumab (100), felvizumab (77), fontolizumab (87), gemtuzumab (83), gevokizumab (104), ficlatuzumab (105), ibalizumab (97), imgatuzumab (107), inotuzumab ozogamicin (92), itolizumab (103), ixekizumab (105), labetuzumab (85), lampalizumab (107), lebrikizumab (101), ligelizumab (107), lintuzumab (86), lorvotuzumab mertansine (103), matuzumab (88), mepolizumab (81), milatuzumab (98), mogamulizumab (104), motavizumab (95), natalizumab (79), nimotuzumab (94), obinutuzumab (101), ocaratuzumab (107), ocrelizumab (95), olokizumab (103), omalizumab (84), onartuzumab (104), oportuzumab monatox (100), ozoralizumab (105), palivizumab (79), parsatuzumab (107), pascolizumab (87), pateclizumab (105), perakizumab (107), pertuzumab (89), pexelizumab (86), ponezumab (104), quilizumab (106), ranibizumab (90), reslizumab (85), romosozumab (106), rontalizumab (101), rovelizumab (81), ruplizumab (83), samalizumab (105), sibrotuzumab (86), simtuzumab (107), siplizumab (87), solanezumab (107), sontuzumab (94), suvizumab (102), tadocizumab (94), talizumab (89), tanezumab (99), tefibazumab (92), teplizumab (97), tigatuzumab (98), tocilizumab (90), toralizumab (87), trastuzumab (78), trastuzumab emtansine (103), tregalizumab (104), tucotuzumab celmoleukin (95), urtoxazumab (90), vatelizumab (105), vedolizumab (100), veltuzumab (98), visilizumab (84), vorsetuzumab (107), vorsetuzumab mafodotin (107), yttrium ⁹⁰Y tacatuzumab tetraxetan (93)

Others: muromonab-CD3 (59) (the first monoclonal antibody to which an INN was assigned belongs to this group but it was named before the stem was established).

4.21. Oxytocin derivatives

The common stem for oxytocin derivatives is -tocin.

```
argiprestocin (13), aspartocin (11), carbetocin (45), cargutocin (35), demoxytocin (22), nacartocin (51), oxytocin (13).
```

4.22. Peptides and glycopeptides

for special groups of peptides see *-actide* (see item 4.27), *-pressin* (see item 4.30), *-relin* (see item 4.25), *-tocin* (see item 4.21)

The common stem for peptides and glycopeptides is *-tide*.

```
analgesic: leconotide (86), ziconotide (78)
angiogenesis inhibitor: cilengitide (81)
angiotensin converting-enzyme inhibitor: teprotide (36)
antianaemic: peginesatide (103)
anti-inflammatory: icrocaptide (89)
antiarrythmic: danegaptide (101), rotigaptide (94)
antidepressant: nemifitide (87)
antidiabetic: amlintide (76), davalintide (101), exenatide (89), lixisenatide
             (99), pramlintide (74), seglitide (57)
antidiarrhoeal: lagatide (75)
antithrombotic: eptifibatide (78) (-fiba- is a pre-substem for platelet
                 aggregation inhibitor (GPIIb/IIIa receptor antagonist))
antiviral: enfuvirtide (85), tifuvirtide (91)
atrial natriuretic factor type substance: anaritide (57), cenderitide (105),
                                        neseritide (80), ularitide (69)
autoimmune disorders: dirucotide (100)
cardiac stimulant: carperitide (65)
```

```
cicatrisation promoter: ensereptide (107)
diagnostic: betiatide (58), bibapcitide (78), ceruletide (34), depreotide (80),
           fluciclatide (^{18}F) (103), maraciclatide (103), mertiatide (60),
           pendetide (70), technetium (99mTc) apcitide (86), technetium
           (99mTc) etarfolatide (107), teriparatide (50)
expectorant (in cystic fibrosis): lancovutide (99)
gastro-intestinal bleeding / antineoplastic: edotreotide (84), ilatreotide (68),
                                           lanreotide (64), octreotide (52),
                                           pentetreotide (66), vapreotide
                                           (62)
gastro-intestinal functions normalizing agent: linaclotide (97), plecanatide
                                               (104)
glucagon-like peptide (GLP) analogues: -glutide
albiglutide (97), dulaglutide (103), elsiglutide (104), liraglutide (87),
semaglutide (101), taspoglutide (99), teduglutide (90)
growth stimulant-veterinary: nosiheptide (35)
gut motility increasing: ociltide (52)
hormone analogue: semparatide (80)
immunological agents - antineoplastics: almurtide (74), delmitide (92),
                                         edratide (89), goralatide (72),
                                         mifamurtide (95), murabutide (49),
                                         pentigetide (60), pimelautide (53),
                                         prezatide copper acetate (67),
                                         rolipoltide (94), romurtide (61),
                                         tabilautide (60), temurtide (60),
                                         tigapotide (95)
immunological agents for active immunization: -motide (see item 4.23)
amilomotide (105), asudemotide (107), disomotide (94), elpamotide (103),
latromotide (107), ovemotide (94), pradimotide (107), tertomotide (98),
tiplimotide (82), trempamotide (107)
```

inhibition of growth hormone release: pasireotide (90)

```
kallicrein inhibitor: ecallantide (93)
```

melanocortin receptor agonist: afamelanotide (99), bremelanotide (95)

neuromodulator / neuroprotective agent: davunetide (100), ebiratide (56), obinepitide (96), vanutide cridificar (100)

peptic ulcer: sulglicotide (29), triletide (50)

pulmonary surfactant: lusupultide (80), sinapultide (78)

sedative: *emideltide* (70)

thrombin receptor as an agonist, promoter of bone and skin wound healing: *rusalatide* (96)

transforming growth factor beta-1 inhibitor: disitertide (99)

treatment of Parkinson's disease: doreptide (59), pareptide (38)

zonulin antagonist (in celiac disease): larazotide (99)

other: defibrotide (44) (nucleotide).

4.23. Peptide vaccines / recombinant vaccines

Definition of peptide vaccines: vaccine in which antigens are produced from synthetic peptides and transported through the bloodstream by an adjuvant, in order to stimulate an immune response.

Definition of recombinant vaccines: vaccine produced from a cloned gene.

Description of recombinant vaccines: there are certain antigens on viruses and bacteria which are better at stimulating an antibody response by the animal than others. The genes for these antigens can be isolated, and made to produce large quantities of the antigens they code for. A recombinant vaccine contains these antigens, not the whole organism. Compare with "modified live vaccine" and "killed vaccine".

The following substances are peptide vaccines (see item 4.22): -motide

amilomotide (105), asudemotide (107), disomotide (94), elpamotide (103), latromotide (107), ovemotide (94), pradimotide (107), tertomotide (98), tiplimotide (82).

The following substance is the recombinant vaccine:

verpasep caltespen (95) (heat-shock protein HSP 65 (Mycobacterium bovis strain BCG) fusion protein with transcription factor E7 (human papilloma virus 16)).

The suffix *-tespen* is the indicator of heat shock protein.

4.24. Pituitary / placental glycoprotein hormones

The names selected by the International Union of Pure and Applied Chemistry–International Union of Biochemistry (IUPAC-IUB) have, to date, been chosen for compounds with an amino acid sequence identical to that of the naturally occurring human hormones. Addition of a Greek letter as the second part of the name will allow differentiation of different glycosylation patterns for compounds produced by biotechnology (see item 3.4 - general policies for glycosylated compounds).

follicle stimulating hormones: ending in (-)follitropin

corifollitropin alfa (80), follitropin alfa (71), follitropin beta (75), follitropin gamma (106), urofollitropin (57), varfollitropin alfa (101)

gonadotropin: ending in -gonadotropin

choriogonadotropin alfa (76), chorionic gonadotrophin (01): chorionic gonadotropins, obtained from human serum and urine during pregnancy and has both lutropin and follitropin activity

serum gonadotrophin (01): used for the follicle stimulating hormone (FSH, follitropin) from serum of pregnant mares

luteinizing hormones: ending in (-)lutropin

lutropin alfa (71).

4.25. Pituitary hormone-release stimulating peptides

The common stem for pituitary hormone-release stimulating peptides is *-relin*.

LHRH-release-stimulating peptides:

avorelin (74), buserelin (36), deslorelin (61), fertirelin (42), gonadorelin (32), goserelin (55), histrelin (53), leuprorelin (47), lutrelin (51), nafarelin (50), peforelin (93), triptorelin (58), zoptarelin doxorubicin (107)

growth hormone release-stimulating peptides: -morelin

anamorelin (97), capromorelin (83), dumorelin (59), examorelin (72), ipamorelin (78), lenomorelin (106), macimorelin (100), pralmorelin (77), rismorelin (74), sermorelin (56), somatorelin (57), tabimorelin (86), tesamorelin (96), ulimorelin (103)

thyrotropin releasing hormone analogues: -tirelin

azetirelin (60), montirelin (58), orotirelin (58), posatirelin (60), protirelin (31), taltirelin (75)

thyrotropin alfa (78) (thyrotropin releasing hormone (TRH) analog, belongs to this group but in which the preferred stem has not been used)

other: corticorelin (66) (diagnostic agent).

4.26. Receptor molecules, native or modified

The stem for receptor molecules, native or modified is -cept.

A preceding infix should designate the target.

B-cell activating factor receptors: -babriobacept (98)

vascular endothelial growth factor receptors: -beraflibercept (96), conbercept (105)

complement receptors: -comirococept (91)

```
subgroup of interferon receptors: -far-
bifarcept (86)
lymphocyte function-associated antigen 3 receptors: -lefa-
alefacept (84)
interleukin-1 receptors: -na-
rilonacept (95)
tumour necrosis factor receptors: -nercept.
baminercept (99), etanercept (81), lenercept (72), onercept (86),
pegsunercept (95)
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) receptors: -ta-
abatacept (91), belatacept (93)
transmembrane activator and calcium modulator and cyclophilin ligand
interactor: -taci-
atacicept (95)
transforming growth factor receptors: -ter-
dalantercept (105), sotatercept (104)
antiviral receptors: -vir-
alvircept sudotox (69).
```

4.27. Synthetic polypeptides with a corticotropin-like action

The common stem for synthetic polypeptides with a corticotropin-like action is *-actide*.

alsactide (45), codactide (24), giractide (29), norleusactide (18), seractide (31), tetracosactide (18), tosactide (24), tricosactide (44), tridecactide (97).

4.28. Thrombomodulins

sothrombomodulin alfa (101), thrombomodulin alfa (94).

4.29. Toxins

toxin ML-1 (mistletoe lectin I) (Viscum album): aviscumine (86).

4.30. Vasoconstrictors, vasopressin derivatives

The common stem for vasoconstrictors, vasopressin derivatives is *-pressin*.

argipressin (13), desmopressin (33), felypressin (13), lypressin (13), ornipressin (22), selepressin (105), terlipressin (46), vasopressin injection (16).

4.31. Various

- alisporivir (100): [8-(N-methyl-D-alanine),9-(N-ethyl-L-valine)]cyclosporine
- agatolimod (98): DNA, d(P-thio)(T-C-G-T-C-G-T-T-T-G-T-C-G-T-T-T-G-T-C-G-T-T)
- angiotensin II (65): 5-L-isoleucineangiotensin II (the source of the material should be *indicated*)
- angiotensinamide (12): N-{1-{N-{N-{N-[N-(N^2-asparaginylarginyl)valyl]tyrosyl}valyl}histidyl}prolyl}-3-phenylalanine
- bamosiran (106): siRNA inhibitor of β2-adrenergic receptor production
- bevasiranib (99): siRNA inhibitor of Vascular Endothelial Growth Factor (VEGF) production
- *blisibimod* (107): B-cell activating factor (BAFF)-binding peptide fragment/human IgG1 Fc fusion protein

- calcitonin (80): a polypeptide hormone that lowers the calcium concentration in blood (the species specificity should be indicated in brackets behind the name)
- conestat alfa (107): human plasma protease C1 inhibitor (C1 esterase inhibitor) (N,O-glycosylated recombinant protein expressed in the mammary gland of transgenic rabbits), glycoform α
- *delcasertib* (105): human immunodeficiency virus 1 protein Tat-(46-57)-peptide (1→1')-disulfide with L-cysteinyl-[mouse protein kinase C delta type-(8-17)-peptide]
- *epelestat* (92): human recombinant neutrophil elastase inhibitor, bovine pancreatic trypsin inhibitor (BPTI) homologue
- edifoligide (89): oligonucleotide
- egaptivon pegol (104): a pegylated aptamer which binds von Willebrand factor; 5'-O-{[6-(carboxyamino)hexyl]hydroxyphosphoryl}-2'-O-methylguanylyl- $(3'\rightarrow5')-2'-O$ -methylcytidylyl- $(3'\rightarrow5')-2'-O$ -methylguanylyl- $(3'\rightarrow5')-2'-O$ methyluridylyl- $(3'\rightarrow5')$ -2'-deoxyguanylyl- $(3'\rightarrow5')$ -2'-deoxycytidylyl- $(3'\rightarrow5')$ -2'deoxyadenylyl- $(3'\rightarrow 5')$ -2'-O-methylguanylyl- $(3'\rightarrow 5')$ -2'-O-methyluridylyl- $(3'\rightarrow5')-2'-O$ -methylguanylyl- $(3'\rightarrow5')-2'-O$ -methylcytidylyl- $(3'\rightarrow5')-2'-O$ methylcytidylyl- $(3'\rightarrow 5')$ -2'-O-methyluridylyl- $(3'\rightarrow 5')$ -2'-O-methyluridylyl- $(3'\rightarrow5')-2'-O$ -methylcytidylyl- $(3'\rightarrow5')-2'-O$ -methylguanylyl- $(3'\rightarrow5')-2'-O$ methylguanylyl- $(3'\rightarrow 5')$ -2'-O-methylcytidylyl- $(3'\rightarrow 5')$ -2'-deoxycytidylyl- $(3'\rightarrow 5')$ -2'-O-methyl-P-thioguanylyl- $(3' \rightarrow 5')$ -thymidylyl- $(3' \rightarrow 5')$ -2'-O-methylguanylyl- $(3'\rightarrow 5')-2'-deoxycytidylyl-(3'\rightarrow 5')-2'-deoxyguanylyl-(3'\rightarrow 5')-2'-deoxyguanylyl (3'\rightarrow 5')$ -thymidylyl- $(3'\rightarrow 5')$ -2'-O-methylguanylyl- $(3'\rightarrow 5')$ -2'-O-methylcytidylyl- $(3'\rightarrow5')-2'-deoxycytidylyl-(3'\rightarrow5')-2'-O-methyluridylyl-(3$ deoxycytidylyl- $(3'\rightarrow 5')$ -2'-deoxycytidylyl- $(3'\rightarrow 5')$ -2'-O-methylguanylyl- $(3'\rightarrow 5')$ -2'-O-methyluridylyl- $(3'\rightarrow 5')$ -2'-deoxycytidylyl- $(3'\rightarrow 5')$ -2'-O-methyladenylyl- $(3'\rightarrow 5')-2'-O$ -methylcytidylyl- $(3'\rightarrow 5')-2'-O$ -methylguanylyl- $(3'\rightarrow 5')-2'-O$ methylcytidylyl- $(3'\rightarrow 3')$ -thymidine, carbamate ester with monomethyl ether of polyethylene gycol (20 kDa)
- hemoglobin glutamer (80): the species specificity should be indicated in brackets behind the name, "(bovine)"; the average mass of the polymer is given as e.g. haemoglobin glutamer-250 for 250kD
- hemoglobin crosfumaril (76): hemoglobin A_0 (human $\alpha_2\beta_2$ tetrameric subunit), α -chain 99,99'-diamide with fumaric acid

- hemoglobin raffimer (89)
- imetelstat (101): oligonucleotide telomerase inhibitor;
 3'-amino-3'-deoxy-P-thiothymidylyl-(3'→5')-3'-amino-2',3'-dideoxy-P-thioadenylyl-(3'→5')-3'-amino-2',3'-dideoxy-P-thioguanylyl-(3'→5')-3'-amino-2',3'-dideoxy-P-thioguanylyl-(3'→5')-3'-amino-3'-deoxy-P-thiothymidylyl-(3'→5')-3'-amino-3'-deoxy-P-thiothymidylyl-(3'→5')-3'-amino-2',3'-dideoxy-P-thioadenylyl-(3'→5')-3'
- *iodinated* (¹²⁵I) human serum albumin (24): human serum albumin iodinated with radioactive iodine (¹²⁵I)
- *iodinated* (¹³¹I) human serum albumin (24): human serum albumin iodinated with radioactive iodine (¹³¹I)
- *iroplact* (74): N-L-methionyl blood platelet factor 4 (human subunit)
- *ismomultin alfa (91)*: 47-261-Glycoprotein gp 39 (human clone CDM8-gp39 reduced)
- *litenimod* (96): (3'-5')d(*P*-thio)(T-A-A-A-C-G-T-T-A-T-A-C-G-T-T-A-T-G-A-C-G-T-C-A-T)
- macrosalb (¹³¹I) (33): macroaggregated iodinated (¹³¹I) human albumin
- *macrosalb* (^{99m}Tc)(33): technetium (^{99m}Tc) labelled macroaggregated human serum albumin
- *metenkefalin (97)*: L-tyrosylglycylglycyl-L-phenylalanyl-L-methionine β-endorphin human-(1-5)-peptide
- metreleptin (82): N-methionylleptin (human)

- *mirostipen* (85): [23-methionine] human myeloid progenitor inhibitory factor 1-(23-99)-peptide
- *nagrestipen* (76): 26-L-alaninelymphokine MIP 1α (human clone pAT464 macrophage inflammatory)
- *ocriplasmin (101)*: truncated human plasmin: human plasmin heavy chain A-(543-561)-peptide (548-666;558-566)-bisdisulfide with human plasmin light chain B
- *opebacan (83)*: 132-L-alanine-1-193-bactericidal / permeability-increasing protein (human)
- orgotein (31): a group of soluble metalloproteins isolated from liver, red blood cells, and other mammalian tissues
- *ovandrotone albumin* (52): 3-[(3,17-dioxoandrost-4-en-7α-yl)thio]propionic acid, serum albumin conjugate
- parathyroid hormone (90): non glycosylated human parathyroid hormone, the origin should be indicated between brackets after the INN, for example (r. E. coli) for recombinant produced by Escherichia coli
- pegaptanib (88): 5'-ester of (2'-deoxy-2'-fluoro)C-Gm-Gm-A-A-(2'-deoxy-2'-fluoro)U-(2'-deoxy-2'-fluoro)C-Am-Gm-(2'-deoxy-2'-fluoro)U-Gm-Am-Am-(2'-deoxy-2'-fluoro)U-Gm-(2'-deoxy-2'-fluoro)C-(2'-deoxy-2'-fluoro)U-Am-(2'-deoxy-2'-fluoro)C-Am-(2'-deoxy-2'-fluoro)C-Am-(2'-deoxy-2'-fluoro)U-(2'-deoxy-2'-fluoro)C-Gm-(3' \rightarrow 3')-dT with α,α' -[[(1S)-1-[[5-(phosphonooxy)pentyl]carbamoyl]pentane-1,5-diyl]bis(iminocarbonyl)]bis[ω -methoxypoly(oxyethane-1,2-diyl)]
- pegdinetanib (103): 94 residues protein derived from human fibronectin 10th type III domain, pegylated: glycyl[1438-L-arginine(D>R),1439-L-histidine(A>H),1441-L-histidine(A>H),1442-L-phenylalanine(V>F),1443-L-proline(T>P),1444-L-threonine(V>T),1467-L-leucine(G>L),1468-L-glutamine(S>Q),1469-L-proline(K>P),1470-L-proline(S>P),1492-L-aspartic acid(G>D),1493-glycine(R>G),1494-L-arginine(G>R),1495-L-asparagine(D>N),1496-glycine(S>G),1497-L-arginine(P>R),1498-L-leucine(A>L),1499-L-leucine(S>L),1501-L-isoleucine(K>I),1515-S-[(3RS)-1-(1-{[α-

methylpoly(oxyethylene)]carbamoyl}-3-[({[\$\alpha\$-methylpoly(oxyethylene)]carbamoyl}oxy)methyl]-8,13-dioxo-1,4-dioxa-9,12-diazapentadecan-15-yl)-2,5-dioxopyrrolidin-3-yl]-L-cysteine(S>C)]human fibronectin-(1424-1516)-peptide

- rintatolimod (102): poly[5']-inosinylyl-(3' \rightarrow) duplex with poly[dodecakis[3']-cytidylyl-(5' \rightarrow)3')-uridylyl-(5' \rightarrow)
- secretin (01): hormone of the duodenal mucosa which activates the pancreatic secretion and lowers the blood-sugar level
- secretin human (106): human peptide hormone secretin
- *serelaxin (105)*: human relaxin 2 (relaxin H2)
- talactoferrin alfa (93): recombinant human lactoferrin
- *tadekinig alfa (90)*: interleukin-18 binding protein (human gene IL 18BP isoform a precursor)
- thrombin alfa (97): human thrombin (recombinant, glycoform α)
- *tiprelestat (103)*: human elafin (elastase-specific inhibitor, skin-derived antileukoproteinase, peptidase inhibitor 3)
- *torapsel* (91): 42-89-glycoprotein (human clone PMT21:PL85 P-selectin glycoprotein ligand 1) fusion protein with immunoglobulin (human constant region)
- *trebananib* (106): immunoglobulin G1 Fc fragment fused with two synthetic polypeptides that bind the *Homo sapiens* ANGPT2 (angiopoietin 2); methionyl (1) -gamma1 heavy chain fragment (2-228) [*Homo sapiens* IGHG1*01 hinge (EPKSC 1-5>del) (2-11), CH2 (12-121), CH3 (122-228)] fused, at the C-terminal end, with a synthetic polypeptide that comprises two 14-mer amino acid repeats that bind angiopoietin 2 (229-287) [linker (229-235) -14-mer (236-249) linker (250-271) -14-mer (272-285) -leucyl-glutamate]; (7-7':10-10')-bisdisulfide dimer
- tremacamra (78): 1-453-glycoprotein ICAM-I (human reduced)

- troplasminogen alfa (99): thrombin-activable plasminogen; endo-[(558a(559)-558h(365))-human coagulation factor XI-(363-370)-peptide]-des-(559-562)-[606(610)-lysine,623(627)-lysine]human plasminogen, glycoform α
- *votucalis* (96): methionyl[145-leucine]FS-HBP2 (*Rhipicephalus appendiculatus* (Brown ear tick) Female-Specific Histamine-Binding Protein 2).

5. CURRENT CHALLENGES

The challenges currently faced include the following:

- The INN Expert Group, when selecting names for recombinant proteins, has to deal not with substances with well-defined structures but with products of highly complex composition or even with mixtures of such products.
- It is not only modified proteins that might differ from their naturally occurring counterparts, products derived by expression of the natural gene in foreign host cells may also differ structurally, biologically or immunologically from the natural protein.
- Glycoproteins particularly may occur in forms that differ in the structure of
 one or more of their carbohydrate units, a phenomenon known as
 microheterogeneity and resulting in a heterogeneous population of molecules.
 Such differences may affect both the size and the charge of individual
 glycoproteins.
- A variety of novel biotechnology-derived products are under development, all of which will require specific policies on how to deal with such products.
- Clearly, the INN nomenclature of biological medicinal products is an area of increasing complexity.

REFERENCES

- 1. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances, 2011, WHO/EMP/QSM/2011.3 *
- 2. International nomenclature and gene therapy products (*WHO Drug Information*, Vol.19, N°2, 2005, p.103) *
- 3. Pre-stems, *INN Working Document 12.317 rev.P*, 23/10/2012 *
- 4. Consultation on International Nonproprietary Names (INN) and biological products, *INN Working Document 00.118* (2002)
- 5. INNs for biotechnological products: collaboration with other parties, *WHO/Pharm S/Nom* 1763 (1999)
- 6. INNs for recombinant vaccines and viruses, WHO/Pharm S/Nom 1719 (1998)
- 7. INNs for biosynthetic vaccines, WHO/Pharm S/Nom 1419 (1994)
- 8. INN nomenclature for peptides, glycopeptides, proteins and glycoproteins, *WHO/Pharm S/Nom 1428 (1994)*
- 9. INNs for immunoglobulins, WHO/Pharm S/Nom 1517 (1995)
- 10. INNs for immunoglobulins, WHO/Pharm S/Nom 101 (1967)
- 11. General policies for monoclonal antibodies, INN Working Document 09.251, 24/06/2009 *
- 12. Definition of INNs for substances prepared by biotechnology, *WHO/Pharm S/Nom 1348* (1992)
- 13. International Nonproprietary Names (INN) for pharmaceutical substances, Lists 1-107 of proposed INN and Lists 1-68 of Recommended INN, Cumulative List N°14, 2012
- 14. Guidelines on the use of International Nonproprietary Names (INNs) for pharmaceutical substances, *WHO/Pharm S/Nom 1570 (1997)*

- 15. INNs of the *-tropin (trophin)* series: pituitary hormones, *WHO/Pharm S/Nom 1406 (1993-1995)*
- 16. INNs for blood factors, WHO/Pharm S/Nom 1362 (1994)
- 17. INNs for growth factor, WHO/Pharm S/Nom 1318 (1991)
- 18. INNs for heparin derivatives, WHO/Pharm S/Nom 1031 (1985-1991)
- 19. Nomenclature of insulin injections, WHO/Pharm S/Nom 1127 (1986)
- 20. Generic names for genetically-engineered insulins, WHO/Pharm S/Nom 737 (1980-1983)
- 21. International nonproprietary names (INN) for pharmaceitucal substances: names for radicals, groups & others (Comprehensive list), WHO/EMP/QSM/2012.2 *

^{*} These documents are available on the INN Programme Website at: http://www.who.int/medicines/services/inn/en/.

ANNEX 1

The list of INN for composite proteins published

classified by groups

-anib (angiogenesis inhibitors)

trebananib (106)

immunoglobulin G1 Fc fragment fused with two synthetic polypeptides that bind the *Homo sapiens* ANGPT2 (angiopoietin 2); methionyl (1) -gamma1 heavy chain fragment (2-228) [Homo sapiens IGHG1*01

methionyl (1) -gamma1 heavy chain fragment (2-228) [*Homo sapiens* IGHG1*01 hinge (EPKSC 1-5>del) (2-11), CH2 (12-121), CH3 (122-228)] fused, at the C-terminal end, with a synthetic polypeptide that comprises two 14-mer amino acid repeats that bind angiopoietin 2 (229-287) [linker (229-235) -14-mer (236-249) – linker (250-271) -14-mer (272-285) -leucyl-glutamate]; (7-7':10-10')-bisdisulfide dimer

-ase

asfotase alfa (104)

tissue-nonspecific alkaline phosphatase- IgG_1 fusion protein;human tissue-nonspecific isozyme alkaline phosphatase (AP-TNAP, EC=3.1.3.1) fusion protein with leucyl-lysyl-human immunoglobulin G1 Fc region {(6-15)-H-CH2-CH3 of $IGHG_1*03$ } fusion protein with aspartyl-isoleucyl-deca(aspartic acid), dimer (493-493':496-496')-bisdisulfide

senrebotase (107)

L-methionylglycyl-L-seryl-des-(445-glycine,446-L-tyrosine)-[2-L-glutamic acid,432,442,444,447-tetra-L-aspartic acid]botulinum neurotoxin A precursor 27-L-alanine variant light chain (433-41')-disulfide with [14-L-arginine,15-L-lysine]human nociceptin fusion protein with L-alanyl-L-leucyl-L-alanyltris(tetraglycyl-L-seryl)-[3-L-valine,4-L-leucine,5-L-glutamine-418-L-leucine,419-L-aspartic acid]botulinum neurotoxin A heavy chain-(1-419)-peptide

⁷ It should be noted that this list may not be comprehensive and the descriptions under the names are the ones published.

abatacept (91)

1-25-oncostatin M (human precursor) fusion protein with CTLA-4 (antigen) (human) fusion protein with immunoglobulin G1 (human heavy chain fragment), bimolecular (146→146')-disulfide

aflibercept (96)

des-432-lysine-[human vascular endothelial growth factor receptor 1-(103-204)-peptide (containing Ig like C2 type 2 domain) fusion protein with human vascular endothelial growth factor receptor 2-(206-308)-peptide (containing Ig like C2 type 3 domain fragment) fusion protein with human immunoglobulin G1-(227 *C*-terminal residues)-peptide (Fc fragment)], (211-211':214-214')-bisdisulfide dimer

atacicept (95)

[86-serine,101-glutamic acid,196-serine,197-serine,222-aspartic acid,224-leucine][human tumor necrosis factor receptor superfamily member 13B-(30-110)-peptide (TACI fragment containing TNFR-Cys 1 and TNFR-Cys 2) fusion protein with human immunogobulin G1-(232 $\it C$ -terminal residues)-peptide ($\it \gamma$ 1-chain Fc fragment), (92-92':95-95')-bisdisulfide dimer

baminercept (99)

human tumor necrosis factor receptor superfamily member 3 (lymphotoxin- β receptor, TNF C receptor)-(2-195)-peptide (fragment of extracellular domain) fusion protein with human immunoglobulin heavy constant γ 1 chain Fc fragment [227 residues, hinge (195-205) des-(1-4),C5>V, CH2 (206-315), CH3 (316-421) des- K^{107}]

conbercept (105)

fusion protein for immune applications (FPIA) comprising *Homo sapiens* FLT1 (fms-related tyrosine kinase 1, vascular endothelial growth factor receptor 1, VEGFR1, vascular permeability factor receptor, tyrosine-protein kinase FRT) fragment, fused with *Homo sapiens* KDR (kinase insert domain receptor, vascular endothelial growth factor receptor 2, VEGFR2, protein-tyrosine kinase receptor FLK1, CD309) fragment, fused with *Homo sapiens* immunoglobulin G1 Fc fragment;

FLT1, 132-232 precursor fragment (1-101) -KDR, 227-421 precursor fragment (102-296) -glycyl-prolyl-glycyl (297-299) -gamma1 chain H-CH2-CH3 fragment (300-526) [*Homo sapiens* IGHG1*03 hinge 6-15 P13>L (307) (300-309), CH2 (310-419), CH3-CH-S (420-526)]; (305-305':308-308')-bisdisulfide dimer

dalantercept (105)

fusion protein for immune applications (FPIA) comprising *Homo sapiens* ACVRL1 (activin A receptor type II-like 1, activin receptor-like kinase 1, ALK1, ALK-1, serine/threonine-protein kinase receptor R3, SKR3, transforming growth factor-beta superfamily receptor type I, TGF-B superfamily receptor type I, TSR-I, HHT2, ORW2) fragment, fused with *Homo sapiens* immunoglobulin G1 Fc fragment;

ACVR2L1, 22-120 precursor fragment (1-99) -threonyl-triglycyl (100-103) - gamma1 chain H-CH2-CH3 fragment (104-328) [*Homo sapiens* IGHG1*03 hinge 8-15 (104-111), CH2 L1.3>A (115), G1>A (118), A115>V (211) (112-221), CH3 S85.3>P (284) (222-328)]; (107-107':110-110')-bisdisulfide dimer

rilonacept (95)

[653-glycine][human interleukin-1 receptor accessory protein-(1-339)-peptide (extracellular domain fragment) fusion protein with human type 1 interleukin-1 receptor-(5-316)-peptide (extracellular domain fragment) fusion protein with human immunoglobulin G1-(229 *C*-terminal residues)-peptide (Fc fragment)], (659-659':662-662')-bisdisulfide dimer

sotatercept (104)

fusion protein for immune applications (FPIA) comprising ACVR2A (activin receptor type 2A, activin receptor type IIA) fragment fused with immunoglobulin G1 Fc fragment, and binding activin, a member of the TGF beta family; ACVR2A, 21-135 precursor fragment (1-115) -threonyl-triglycyl linker (116-119) -gamma1 chain H-CH2-CH3 fragment (120-344) [Homo sapiens IGHG1*03 hinge (120-127), CH2, A115>V (128-237), CH3 (238-344)]; (123-123':126-126')-bisdisulfide dimer

-cept & -tox

alvircept sudotox 8(69)

⁸ The names and the descriptions of toxins are published in Annex 4-1 of "International Nonproprietary Names (INN) for pharmaceutical substances. Names for radicals, groups & others: comprehensive list (WHO/EMP/QSM/2012.2)".

 N^2 -L-methionyl-1-178-antigen CD4 (human clone pT4B protein moiety reduced)(178 \rightarrow 248')-protein with 248- L-histidine-249- L-methionine-250- L-alanine-251- L-glutamic acid-248-613-exotoxin A(Pseudomonas aeruginosa reduced)

interferon

albinterferon alfa-2b (97)

human serum albumin (585 residues) fusion protein with human interferon α -2b (165 residues)

-kin & -tox

cintredekin besudotox (92)

toxin hIL13-PE38QQR (plasmid phuIL13-Tx)

denileukin diftitox (78)

N-L-methionyl-387-L-histidine-388-L-alanine-1-388-toxin (*Corynebacterium diphtheriae* strain C7) (388 \rightarrow 2')-protein with 2-133-interleukin 2 (human clone pTlL2-21a)

-mab & dotin

vorsetuzumab mafodotin (107)

immunoglobulin G1-kappa auristatin F conjugate, anti-[Homo sapiens CD70 (tumor necrosis factor superfamily member 7, TNFSF7, CD27LG, CD27L)], humanized monoclonal antibody conjugated to auristatin F; gamma1 heavy chain (1-448) [humanized VH (Homo sapiens IGHV1-2*02 (86.70%) -(IGHD)-IGHJ6*01) [8.8.11] (1-118) -Homo sapiens IGHG1*01 (119-448)], (221-218')-disulfide (if not conjugated) with kappa light chain (1'-218') [humanized V-KAPPA (Homo sapiens IGKV4-1*01 (79.20%) -IGKJ1*01) [10.3.9] (1'-111') -Homo sapiens IGKC*01 (112'-218')]; (227-227":230-230")-bisdisulfide dimer; conjugated, on an average of 3 to 5 cysteinyl, to

monomethylauristatin F (MMAF), via a non-cleavable maleimidocaproyl (mc) linker

mafodotin

N-{(2R,3R)-3-[(2S)-1-[(3R,4S,5S)-4-({N-[6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanoyl]-N-methyl-L-valyl-L-valyl}methylamino)-3-methoxy-5-methylheptanoyl]pyrrolidin-2-yl]-3-methoxy-2-methylpropanoyl}-L-phenylalanine

-mab & -kin

tucotuzumab celmoleukin (95)

immunoglobulin G1, anti-(tumor associated calcium signal transducer 1 (KS 1/4 antigen)) (human-mouse monoclonal huKS-IL2 heavy chain) fusion protein with interleukin 2 (human), disulfide with human-mouse monoclonal huKS-IL2 light chain, dimer

-mab & -tox

anatumomab mafenatox (86)

immunoglobulin G 1, anti-(human tumor-associated glycoprotein 72) (human-mouse clone pMB125 Fab fragment γ 1-chain) fusion protein with enterotoxin A (227-alanine) (*Staphylococcus aureus*) complex with mouse clone pMB125 κ -chain)

citatuzumab bogatox (99)

immunoglobulin Fab fusion protein, anti-[*Homo sapiens* tumor-associated calcium signal transducer 1 (TACSTD1, gastrointestinal tumor-associated protein 2, GA733-2, epithelial glycoprotein 2, EGP-2, epithelial cell adhesion molecule Ep-CAM, KSA, KS1/4 antigen, M4S, tumor antigen 17-1A, CD326)], humanized Fab fused with *Bougainvillea spectabilis Willd* rRNA N-glycosidase [type I ribosome inactivating protein (RIP), bouganin], VB6-845; gamma1 heavy chain fragment (1-225) [hexahistidyl (1-6) -humanized VH from 4D5MOC-B (*Homo sapiens* FR/*Mus musculus* CDR, *Homo sapiens* IGHJ4*01, V124>L) [8.8.9] (7-122) -*Homo sapiens* IGHG1*01 CH1-hinge fragment EPKSC (123-225)], (225-219')-disulfide with kappa fusion chain (1'-481') [humanized V-KAPPA from clone 4D5MOC-B (*Homo sapiens* FR/*Mus musculus* CDR, *Homo sapiens*

IGKJ1*01, I126>L) [11.3.9] (1'-112') -Homo sapiens IGKC*01 (113'-219') -12-mer furin linker (proteolytic cleavage spacer from Pseudomonas exotoxin A) (220'-231') -Bougainvillea spectabilis Willd bouganin fragment (27-276 from precursor, V354'>A, D358'>A, Y364'>N, I383'>A) (232'-481')]

dorlimomab aritox (66)

ricin A chain-antibody ST 1 F(ab')2 fragment immunotoxin

moxetumomab pasudotox (102)

immunoglobulin Fv fragment fused to *Pseudomonas* toxin, anti-[*Homo sapiens* CD22 (sialic acid-binding Ig-like lectin 2, Siglec-2, SIGLEC2, Leu-14, B-lymphocyte cell adhesion molecule, BL-CAM)], *Mus musculus* monoclonal antibody disulfide stabilized Fv fragment with the variable heavy VH domain fused with the truncated form PE38 of *Pseudomonas aeruginosa* exotoxin A (VH-PE38), disulfide linked with the variable kappa domain (V-KAPPA)]; VH-PE38 (1-476) comprising the VH domain (1-123) [methionyl *-Mus musculus* VH [(IGHV5-12-1*01 -(IGHD)-IGHJ3*01) [8.8.16] (2-123)] fused with a 7-mer linker (124-130) and with the *Pseudomonas aeruginosa* exotoxin A (ETA) PE38 fragment (131-476) [277-638 precursor fragment with del 389-405>N (131-476), containing domain II (131-243) with furin proteolytic cleavage site (152-164), domain Ib (244-267), domain III (268-476)], (45-101')-disulfide with V-KAPPA (1'-108') [methionyl *-Mus musculus* V-KAPPA [(IGHKV10-96*01 -IGKJ1*01) [6.3.9] (2'-108')]

nacolomab tafenatox (80)

immunoglobulin G1, anti-(human colorectal tumor antigen C242) Fab fragment (mouse monoclonal r-C242Fab-SEA clone pkP941 γ 1-chain) fusion protein with enterotoxin A (*Staphylococcus aureus*), disulfide with mouse monoclonal r-C242Fab-SEA clone pkP941 κ -chain

naptumomab estafenatox (96)

immunoglobulin fragment, anti-[trophoblast glycoprotein (TPBG, 5T4)] monoclonal 5T4 gamma1 heavy chain fragment fusion protein [*Mus musculus* VH (5T4V14: H41>P, S44>G, I69>T, V113>G)-IGHG1_CH1)] - [Glycyl-Glycyl-Prolyl] - superantigen SEA/E-120 (synthetic), non-disulfide linked with monoclonal 5T4 kappa light chain [*Mus musculus* V-KAPPA (5T4V18: F10>S, T45>K, I63>S, F73>L, T77>S, L78>V, L83>A)-IGKC]

oportuzumab monatox (100)

immunoglobulin scFv fusion protein, anti-[*Homo sapiens* tumor-associated calcium signal transducer 1 (TACSTD1, gastrointestinal tumor-associated protein 2, GA733-2, epithelial glycoprotein 2, EGP- 2, epithelial cell adhesion molecule Ep-CAM, KSA, KS1/4 antigen, M4S1, tumor antigen 17-1A, CD326)] humanized monoclonal antibody scFv fused with *Pseudomonas aeruginosa* exotoxin A; hexahistidyl -humanized scFv [V-KAPPA (*Homo sapiens* IGKV1- 39*01 (78%)-IGKJ1*01, I126>L) [11.3.9] (7-118) -26-mer linker -VH (*Homo sapiens* IGHV7-4-1*02 -(IGHD)-IGHJ4*01, V124>L) [8.8.9] (145-260)] -20-mer linker - *Pseudomonas aeruginosa* exotoxin A (ETA) [277-633 precursor fragment, containing domain II (281-393) with furin proteolytic cleavage site (302-313), domain Ib (394-433), domain III (434-637)] (281-637) -hexahistidyl-lysyl-aspartyl-glutamylleucyl

taplitumomab paptox (84)

immunoglobulin G1, anti-(human antigen CD19) (mouse monoclonal B43 γ 1-chain), disulfide with mouse monoclonal B43 κ -chain, dimer, disulfide with protein PAP (pokeweed antiviral)

telimomab aritox (66)

ricin A chain-antibody T 101 Fab fragment immunotoxin

zolimomab aritox (80)

immunoglobulin G1, anti-(human CD5 (antigen) heavy chain) (mouse monoclonal H65-RTA γ 1-chain), disulfide with mouse monoclonal H65-RTA light chain, dimer, disulfide with ricin (castor bean A-chain)

-stim (colony stimulating factors)

balugrastim (107)

human serum albumin (585 residues) fusion protein with des-(1-alanine,37-valine,38-serine,39-glutamic acid)-human granulocyte colony-stimulating factor (pluripoietin)

romiplostim (97)

L-methionyl[human immunogloblin heavy constant gamma 1-(227 *C*-terminal residues)-peptide (Fc fragment)] fusion protein with 41 amino acids peptide, (7-7':10,10')-bisdisulfide dimer

-tide

albiglutide (97)

([8-glycine]human glucagon-like peptide 1-(7-36)-peptidyl)([8-glycine]human glucagon-like peptide 1-(7-36)-peptidyl)(human serum albumin (585 residues))

cenderitide (105)

natriuretic peptide receptor type B (NPR-B) agonist; human C-type natriuretic peptide-(32-53)-peptide (CNP-22) fusion protein with eastern green mamba (*Dendroaspis angusticeps*) natriuretic peptide-(24-38)peptide

dulaglutide (103)

glucagon-like peptide-1-immunoglobulin G4 fusion protein, [2-glycyl,16-L-glutamyl,30-glycyl][human glucagon-like peptide 1-(7-37)-peptide] {(8-A>G,22-G>E,36-R>G)-GLP-1(7-37)} fusion protein with tris(tetraglycyl-L-seryl)-L-alanine (linker) fusion protein with des-276-lysine-[57-L-proline,63-L-alanine,64-L-alanine]human immunoglobulin G4 Fc region {(10-S>P)-H-(4-F>A,5-L>A)-CH2-(107-K>-)-CH3 of IGHG4*01}, dimer (55-55':58-58')-bisdisulfide

elsiglutide (104)

[2-glycine(A>G),3-glutamic acid(D>E),8-serine(D>S),10-leucine(M>L),11-serine(N>S),16-alanine(N>A),24-alanine(N>A),28-alanine(Q>A)]human glucagon-like peptide 2 (GLP-2) fusion protein with hexalysinamide

vanutide cridificar (100)

inactivated diphtheria toxin (carrier) covalently linked to human beta-amyloid protein 42 short fragments: pentadecakis $[N^{6-Lys}$ -(sulfanylacetyl)]-[52-glutamic

acid(G>E)]diphtheria toxin *Corynebacterium diphtheriae* thioether with human beta-amyloid protein 42-(1-7)-peptidylcysteine

Others

torapsel (91)

42-89-glycoprotein (human clone PMT21:PL85 P-selectin glycoprotein ligand fusion protein with immunoglobulin (human constant region)

transferrin aldifitox (95)

a conjugate of the precursor of human serotransferrin (siderophillin) with a primary amine group used to form an amidine with (4-iminobutane-1,4-diyl)sulfanediyl[(3RS)-2,5-dioxopyrrolidine-1,3-diyl]-1,3-phenylenecarbonyl and forming an *N*-benzoyl derivative of a primary amine group of diphtheria [550-L-phenylalanine]toxin from *Corynebacterium diphtheriae*-(26-560)-peptide

verpasep caltespen (95)

60 kDa chaperonin 2 (heat shock protein 65 from *Mycobacterium bovis* strain BCG) fusion protein with L-histidylprotein E7 from human papillomavirus type 16.

zoptarelin doxorubicin (107)

[6-D-lysine]human gonadoliberin-1 (LHRH) and doxorubicin covalently linked together with glutaric acid:

5-oxo-L-prolyl-L-histidyl-L-tryptophyl-L-seryl-L-tyrosyl- N^6 -[5-(2-{(2S,4S)-4-[(3-amino-2,3,6-trideoxy- α -L-lyxo-hexopyranosyl)oxy]-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-2-yl}-2-oxoethoxy)-5-oxopentanoyl]-D-lysine-L-leucyl-L-arginyl-L-prolylglycinamide

ANNEX 2

Transliteration of Greek letters in English, French and Spanish

	Spanish	French	English	Lower case	Upper case
	alfa	alfa	alfa	α	A
		(and not alpha)	(and not alpha)		
	beta	bêta	beta	β	В
	gamma	gamma	gamma	γ	Γ
	delta	delta	delta	δ	Δ
	épsilon	epsilon	epsilon	3	Е
*	<u>ds</u> eta	zêta	zeta	ζ	Z
	eta	êta	eta	η	Н
*	<u>z</u> eta	thêta	theta	θ	Θ
	iota	iota	iota	ι	I
	kappa	kappa	kappa	К	K
	lambda	lambda	lambda	λ	Λ
	mi	mu	mu	μ	M
	ni	nu	nu	ν	N
	xi	xi	xi	بح	[1]
	ómicron	omicron	omicron	0	О
	pi	pi	pi	π	П
	ro	rhô	rho	ρ	P
	sigma	sigma	sigma	σ	Σ
	tau	tau	tau	τ	Т
	ípsilon	upsilon	upsilon	υ	Y
	fi	phi	phi	φ	Ф
	ji	khi	chi	χ	X
	psi	psi	psi	Ψ	Ψ
	omega	oméga	omega	ω	Ω

^{*} letters to be avoided

The previous naming scheme for monoclonal antibodies

General policies for monoclonal antibodies

- The common stem for monoclonal antibodies is -mab.
- Sub-stems for source of product:

а	rat
axo (pre- sub-stem)	rat-murine hybrid
e	hamster
i	primate
0	mouse
и	human
xi	chimeric
zu	humanized

The distinction between chimeric and humanized antibodies is as follows:

A <u>chimeric</u> antibody is one that contains contiguous foreign-derived amino acids comprising the entire variable region of both heavy and light chains linked to heavy and light constant regions of human origin.

A <u>humanized</u> antibody has segments of foreign-derived amino acids interspersed among variable region segments of human-derived amino acid residues and the humanized heavy-variable and light-variable regions are linked to heavy and light constant regions of human origin.

• Sub-stems for disease or target class:

-ba(c)-	bacterial
-ci(r)-	cardiovascular
-fung-	fungal
-ki(n)- (pre- sub-stem)	interleukin
-le(s)-	inflammatory lesions
-li(m)-	immunomodulator
-os-	bone
-vi(r)-	viral

tumours:

-co(l)-	colon
-go(t)-	testis
-go(v)-	ovary
-ma(r)-	mammary
-me(l)-	melanoma
-pr(o)-	prostate
-tu(m)-	miscellaneous

Whenever there is a problem in pronunciation, the final letter of the sub-stems for diseases or targets may be deleted, e.g. -vi(r)-, -ba(c)-, -li(m)-, -co(l)-, etc.

Prefix

Should be random e.g. the only requirement is to contribute to a euphonious and distinctive name.

Second word

If the product is radiolabelled or conjugated to another chemical, such as toxin, identification of this conjugate is accomplished by use of a separate, second word or acceptable chemical designation.

If the monoclonal antibody is used as a carrier for a radioisotope, the latter will be listed first in the INN, e.g. technetium (^{99m}Tc) pintumomab (86).

-toxa- infix

For monoclonals conjugated to a toxin, the infix *-toxa-* can be inserted either into the first (main) name or included in the second word.