# Proposed Evidence Review Group on assessment of malariogenic potential to inform elimination strategies and plans to prevent re-establishment





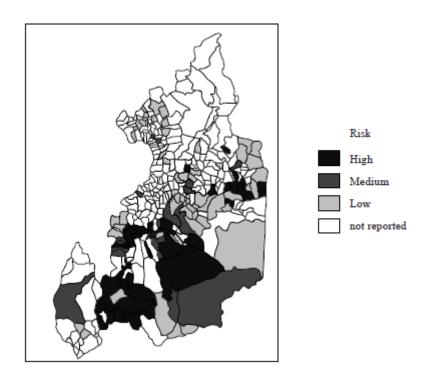


Malaria Policy Advisory Committee Meeting Geneva, Switzerland 11 – 13 April 2018

Global Malaria Programme



#### **Background**








 Understanding malaria transmission risk in a given geographical area provides the foundation for the design of (cost-)effective intervention programmes to decrease malaria burden, eliminate transmission and prevent re-establishment of malaria

Malaria transmission risk = malariogenic potential



Note: Figure depicting malaria risk in Moneragala district, Sri Lanka, based on median annual parasite incidence. From Wickremasinghe et al. 2002

#### **Background - terminology**



MALARIOGENIC POTENTIAL = RECEPTIVITY + VULNERABILITY + 'INFECTIVITY'

 $\uparrow$ 

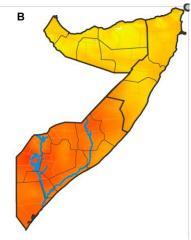
COMPETENT

**VECTORS** 

SUITABLE CLIMATE

SUSCEPTIBLE POPULATION

RATE OF IMPORTATION OF PARASITES

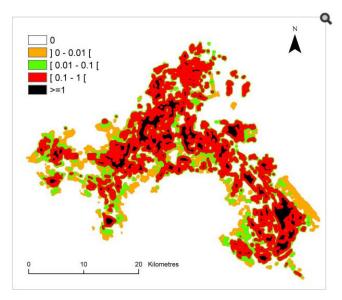

COMPATIBILITY
OF VECOR &
INFECTING
Plasmodium
STRAIN

#### **Receptivity measurements**



 Historic parasite prevalence measures

Map of the maximum mean PfPR<sub>2-10</sub> prediction (receptive) at 1×1 km grid location as computed from the posterior annual mean PfPR<sub>2-10</sub> prediction for each year from 2007 to 2010




Noor et al. BMJ Open 2012

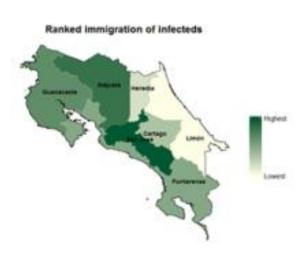
\_

Calculation of vectorial capacity (or a proxy)

Spatial variations of *P.*falciparum transmission risk estimate
(ranging from 0 to more than 1) in August
in the Camargue, France

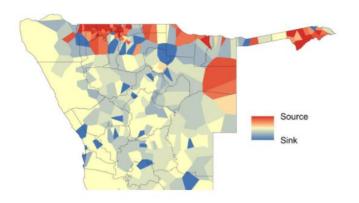


Ponçon et al. Malar J 2008




#### **Vulnerability**




 Importation of infections derived from censusbased movement patterns  Net rates of importation derived from mobile phone data

Expected immigration of infected people into each province in Costa Rica



Ruktanonchai, Malar J 2016

Mapped 'sources' (net exporters) and 'sinks' (net importers) of malaria importation risk



Tatem, Malar J 2014



## Infectivity



- Regional receptivity of endemic anophelines to exotic strains of human malarias
- Data suggest that not all anophelines can be infected equally by all Plasmodium spp.

Table 1. Results of comparative infection experiments with A. atroparvus, A. labranchiae, and A. gambiae fed on gametocyte carriers of P. falciparum at Kisumu, Kenya

| Anopheles strain                  | Mid-gut<br>dissections |                              | Salivary gland<br>dissections |                                       |
|-----------------------------------|------------------------|------------------------------|-------------------------------|---------------------------------------|
|                                   | number<br>examined     | number<br>showing<br>oocysts | number<br>examined            | number<br>showing<br>sporo-<br>zoites |
| A. atroparvus (Orcia)             | 48                     | 0                            | 15                            | 0                                     |
| A. atroparvus (Upper<br>Volturno) | 69                     | 3 4                          | 41                            | 0                                     |
| A. labranchiae<br>(Tarquinia)     | 17                     | 0                            | 14                            | 0                                     |
| A. gambiae species B<br>(Kisumu)  | 170                    | 131                          | 72 b                          | 23                                    |

<sup>&</sup>lt;sup>4</sup> Two dissected on the 9th and 11th days, respectively, showed a single oocyst. One dissected on the 19th day showed 3 incompletely developed oocysts containing no sporozoites.



b Includes 50 oocyst-positive and 22 oocyst-negative specimens.

## **Background – WHO guidance**







- WHO Framework for malaria elimination recommends:
  - subnational stratification to inform the selection of interventions
  - measurement of receptivity and vulnerability to prevent reestablishment of transmission after elimination
  - vector control coverage should be maintained after elimination in areas with high malariogenic potential



# Identified needs & opportunities







- Increasing demand for guidance around the assessment of receptivity and vulnerability, especially for countries that are working to prevent re-establishment of transmission
- Existing guidance in this area is limited, resulting in substantial investments, for example into entomological surveillance, sometimes without a clear link between the data generated and programmatic decision-making
- Vector susceptibility to imported parasites contributes to malariogenic potential that is not frequently considered
- Opportunities for improved guidance:
  - Availability of more sophisticated methods and data sources, such modelbased geostatistical frameworks, cell phone information and other remotely sensed data for population mobility
  - Increasing amounts of practical experience with the challenges of transitioning programmes from control activities to more targeted designs aimed at eliminating malaria or preventing its re-establishment.



## **Proposed ERG objectives**



- To review current **definitions** of receptivity, vulnerability and malariogenic potential contained in the WHO glossary and, if required, recommend improvements to ensure that the definitions are valid and appropriate;
- 2. To review available **methodologies** for assessing receptivity and recommend appropriate and valid methodological approaches, including data requirements, for national malaria programmes to use to measure receptivity in their respective countries;
- To advise WHO on options for classifying receptivity according to programmatically relevant categories aimed at guiding interventions to prevent re-establishment of transmission;



## **Proposed ERG objectives**



- 4. To review the validity and practicality of available methods for assessing vulnerability and recommend appropriate and valid methodological approaches, including data requirements, for national malaria programmes to use to assess vulnerability in their respective countries;
- 5. To review data on the regional receptivity ('infectivity') of endemic anophelines to exotic strains of human malaria;
- To advise WHO on approaches to combining measures of receptivity, vulnerability and infectivity to guide national malaria programmes in designing strategies to prevent reestablishment of transmission.

#### **Questions to MPAC**



 Does MPAC support the convening of the proposed ERG meeting in principle?

 Do the objectives of the ERG accurately reflect the identified needs for improved guidance or are modifications to the TORs needed?