
User guide for the BMat model

This is a brief guide to running the BMat R scripts to produce the UN
MMEIG maternal mortality estimates1
	

In	order	to	run	the	scripts	basic	knowledge	of	R	programming	language	is	necessary.	If	
needed,	we	recommend	‘free-introduction-to-r’	course	provided	on	datacamp.com	for	
quick	introduction	to	R.	WHO/SRH	is	unable	to	provide	support	with	basic	R	programming	
language.	

Caveat
• The	output	from	the	runs	may	differ	slightly	from	the	published	figures	due	to	run-to-

run	variation.	

the BMat R files are bundled within the ‘bmat2019_code.Rproj’
project file
Upon	clicking	the	‘bmat2019_code.Rproj’	that	is	included	with	the	BMat	codes,	you	will	see	
the	different	folders	and	files	in	the	project	

• inputs	
• Main.R	
• output	
• R	

the input folder contains the following files :
• BMat2019_datainputs.csv	which	is	the	input	data	for	the	model	
• jags_model_file.txt	which	is	the	bayesian	model	specification	for	JAGS	
• meta.rds	which	contains	program	meta	data	such	as	country	ISO	codes,	live	births	e.t.c	

	

1	Trends	in	maternal	mortality	2000	to	2017:	estimates	by	WHO,	UNICEF,	UNFPA,	World	Bank	Group	
and	the	United	Nations	Population	Division.	Geneva:	World	Health	Organization;	2019.	

the output folder
This	folder	holds	the	different	run	outputs	specified	in	main.R	code	

the R folder
This	folder	contains	different	R	scripts:	

• 2a_getjagsdata.R	
• 2c_mcmc.R	
• 3_getcountryresults.R	
• misc_functions.R	

the ‘main.R’ script
The	simulation	runs	are	made	using	the	‘main.R’	code	which	is	described	in	details	below	

In	the	first	line	of	the	code	you	choose	the	model	output	runname,	for	example	in	the	code	
below	“test”	is	chosen	as	the	run	name	

• a	folder	will	created	on	the	outputs	folder	with	the	chosen	runname	
# output will be saved in folder output/runname	
runname <- "test" # choose your runname	

In	the	next	lines,	different	packages	are	loaded	

# load libraries	
library(rjags)	
library(msm)	
library(mvtnorm)	
library(R2jags)	
library(foreign)	
library(tidyverse)	
library(readxl)	
library(R.utils)	
library(truncnorm)	

In	lines	27-28	of	the	code	,different	r	scripts	in	the	‘R’	folder	are	loaded	and	run	

# load libraries	
# source scripts in R subfoler with functions	
Rfiles <- list.files(file.path(paste0(getwd(),"/R/")), ".R")	
Rfiles <- Rfiles[grepl(".R", Rfiles)]	
sapply(paste0(paste0(getwd(),"/R/"), Rfiles), source)	

In	line	34	the	directory	in	output	is	created	

# create output folder and store relevant info in it	
output.dir <- MakeDirs(runname)	

In	line	35-48,	the	input	data	is	read	and	the	JAGS	data	input	is	created	using	the	
GetJagsData	function	

dat <- read_csv("inputs/BMat2019_datainputs.csv", na = "NA",	
 # use guess_max to avoid mmr_obs and SE column turning into
logicals	
 # (alternatively, specify all column types)	
 guess_max = 4424) 	
# rename for consistency with code	
datall <- dat %>%	
 rename(final_pm = pm_obs, final_env = env,	
 rhovr = crvs_completeness) %>%	
 filter(modelinclude)	
saveRDS(datall, paste0(output.dir, "/datall.rds"))	
meta <- readRDS("inputs/meta.rds")	
saveRDS(meta, paste0(output.dir, "/meta.rds"))	
file.copy("inputs/jags_model_file.txt", paste0(output.dir, "/model.txt"),
overwrite = TRUE)	
GetJagsData(runname = runname)	

In	lines	52	to	54	you	choose	which	kind	of	run	to	make	using	the	RunMCMC	function	

• test	
• quick	
• long	(for	actual	results)	
# run model	
RunMCMC(runname, runsettings = "test") # just to get test results	
#RunMCMC(runname, runsettings = "quick") # 1 hour run	
#RunMCMC(runname, runsettings = "long") # for actual results	

The	RunMCMC	function	in	‘2c_mcmc.R’	code	in	the	R	folder	has	the	following	parameter	
settings	

RunMCMC <- function(
 runname = runname,	
 # mcmc SETTINGS	
 runsettings,	
 ## choose from ("test", "quick", "long")	
 ## test is only for checking if the model runs (just a few iterations);	
 # quick is for getting approximate results in an hour or so;	
 # long is for geting final results	
 run.on.server = TRUE # using doMC and foreach libraries	
)	

Before	making	the	final	run	you	can	choose	whether	to	run	the	code	on	server	or	not	
(essentially	which	way	to	run	the	code	in	parallel)	-	you	can	toggle	this	option	using	
run.on.server	option	in	RunMCMC	

if	you	choose	run.on.server	=	FALSE	then	it	runs	the	jag.parallel	functions	as	shown	incode	
snippet	below	

mod <- jags.parallel(jagsdata,jags.params, model.file = paste0(output.dir,
"model.txt"),	
 inits = inits(meta =meta),	
 n.chains=n.chains,	
 n.burnin = n.burnin, n.iter= n.burnin+n.iter.perstep*N.STEPS, n.thin =
n.thin)	
)	

If	you	choose	run.on.server	=	TRUE	then	it	invokes	the	foreach	parallel	process,	see	code	
below	

library(foreach)	
 library(doMC)	
 registerDoMC()	
	
 foreach(chainNum=ChainNums) %dopar% {	
 set.seed(chainNum)	
 temp <- rnorm(chainNum)	
 mod <- jags(data = jagsdata,	
 inits = inits(meta = meta),	
 parameters.to.save = jags.params,	
 n.chains = 1,	
 n.iter = n.iter.perstep+n.burnin,	
 n.burnin = n.burnin, n.thin = n.thin,	
 model.file= paste0(output.dir, "model.txt"),	
 jags.seed = 123*chainNum,	
 working.directory= getwd())	

You	can	choose	the	number	of	cores	for	the	parallel	using	registerDoMC(),	e.g	to	use	4	cores	
you	would	set	as	registerDoMC(4)	

# set parallel process to use 4 cores of the machine	
 registerDoMC(4)	

• the	settings	holds	the	type	of	run	test,	quick	or	long	

in	line	58-59	of	the	main.R	code	you	choose	the	percentiles	for	the	summaries	

percentiles <- c(0.1, 0.5, 0.9)	
percnames <- paste0("perc_", 100*percentiles, "%")	

After	the	codes	completes	to	run	you	get	summaries	for	each	country	using	the	
GetCountryResults(runname)	function,	see	below	

GetCountryResults(runname)	

After	running	the	GetCountryResults(runname)	function	you	get	different	R	output	objects	
are	created	in	the	output/runname	folder	

• CI.rds	
• matdeaths.cts.rds	

you can load the CI.rds (see below) to get the summaries and 80%
bayesian credible intervals

CIs <- readRDS(paste0(output.dir, "CIs.rds"))	
names(CIs)	
CIs$mmr.cqt	
CIs$mmr.cqt	

The	following	output	summaries	are	available	within	the	CI.rds	object	

• mmr.cqt	(maternal	mortality	ratio)	

• pm.cqt	(proportion	of	deaths	among	women	of	reproductive	age	due	to	maternal	
causes)	

• pmmean.ct	(proportion	of	deaths	among	women	of	reproductive	age	due	to	maternal	
causes	mean)	

• mmrmean.ct	(maternal	mortality	ratio	mean)	

• mmraids.ct	(aids	maternal	mortality	ratio	mean)	

• mmrate.cqt	(maternal	mortality	rate)	

• ltr.cqt	(life	time	risk	of	maternal	death)	

• aidsdeaths.ct	(aids	deaths)	

• matdeaths.cqt	(maternal	deaths)	

• arrscts.kx	(annual	rate	of	reduction)	

Finally you can produce specific country estimates and export to csv
using the function WriteCountryCsvs included in the
“misc_functions.R”

