

DRAFT WHO TARGET PRODUCT PROFILE FOR AEROSOLISED SURFACTANT THERAPY IN NEONATES WITH RESPIRATORY DISTRESS SYNDROME IN LOW AND MIDDLE INCOME COUNTRIES DRAFT, V0.1, 20JUNE2022

Introduction

Respiratory distress syndrome (RDS) causes approximately 15% of all neonatal deaths globally.^{1,2} Antenatal corticosteroids and early initiation of continuous positive airway pressure (CPAP) both have substantial impacts on RDS mortality.³⁻⁵ There is clear evidence that surfactant therapy reduces RDS in preterm infants and improves survival.^{6,7} Surfactant is used as both a rescue and preventive treatment for RDS in preterm infants in high income countries. Currently surfactant administration requires endotracheal intubation with liquid surfactant instillation directly into the trachea. The infant then often requires mechanical ventilation until respiratory status improves.

The World Health Organization (WHO) recommends surfactant for preterm intubated and ventilated newborns with RDS, using animal derived or protein containing synthetic formulations.^{8,9} However, current WHO guidelines state that surfactant should only be used in health care facilities where blood gas analysis, newborn nursing care and monitoring are available.⁸ Costs of current formulations also remain high. Use of surfactant has been a challenge in low and middle income countries (LMICs). To date surfactant use has been generally confined to level 3 tertiary level neonatal intensive care units (NICUs) and has been 'out of reach' of many level 2 special care baby units at the district level.⁸

Recent improvements in aerosolisation technology have, for the first time, allowed the administration of surfactant without the need for intubation and ventilation.^{10,11} Aerosolised surfactant formulations are likely to be lower cost and require less monitoring and nursing care than conventional formulations.¹¹ This could allow their use in district level 2 special care baby units in all countries around the world. However, aerosolised surfactant is relatively new and the optimal formulation, administration, and feasibility (including storage and administration) in low resource settings has not yet been addressed.

Thus WHO is seeking input into the minimal and optimal characteristics of an aerosolised surfactant that can be used for neonates with RDS in low and middle income countries (LMICs) and has developed a target product profile (TPP) for comment.

Purpose of the TPP

The purpose of the TPP is to guide product developers about key test characteristics and performance specifications that will meet the needs of end users in LMICs. It describes the minimal and optimal characteristics of an aerosolised surfactant for treatment of RDS in newborns in LMICs.

Overarching principles are that the aerosolised surfactant and delivery system for LMICs should be:

- as safe and efficacious as conventional formulations of surfactant
- feasible for administration and monitoring
- affordable
- able to be used in special care baby units (level 2 and above) in all countries around the world

Methods

In 2021 and 2022 WHO reviewed literature and the world wide web to find existing aerosolised surfactant TPPs for use in neonates. Only one TPP was found.¹² WHO used this TPP to draft a TPP focused on needs in LMICs. A consultative meeting of end users (doctors, nurses, supply chain program officers, members of academic organizations) was held on 11th and 12th January 2022. There were 41 attendees from 16 countries including 13 LMICs. The draft TPP was revised based on the consultative meeting and the current zero draft (v0.1, 20June2022) was developed. The zero draft TPP has now been posted for public consultation with the purpose of inviting comments and suggestions on the TPP.

TARGET PRODUCT PROFILE FOR AEROSOLISED SURFACTANT THERAPY IN NEONATES WITH RESPIRATORY DISTRESS SYNDROME IN LOW AND MIDDLE INCOME COUNTRIES DRAFT, V0.1, 20JUNE2022

No.	Characteristic	Minimal characteristics	Optimal characteristics		
	Scope, efficacy and safety				
1	Indication for	Treatment of RDS not responding to use	Treatment of RDS regardless of use of		
	use	of noninvasive respiratory support	noninvasive respiratory support devices		
		devices (NRS) (e.g. CPAP)	(NRS) (e.g. CPAP)		
2	Target	Neonates \geq 1000g birth weight or \geq 28	Any neonate with RDS		
	population	weeks gestational age with RDS			
3	Target facilities	Facilities providing level 2 special care ¹³	Facilities providing level 2 special care ¹³		
	in LMIC	able to refer to level 3 facilities	regardless of referral network		
4	Target user (in	User must be a medical doctor who has	User must be nurse, medical assistant,		
	facilities	some training in neonatal care,	clinical assistant, medical doctor,		
	described	paediatrician, neonatologist or	paediatrician, neonatologist or		
	above)	equivalent	equivalent		
5	Efficacy	20% reduction in mortality in infants	> 30% reduction in mortality in infants		
		who receive CPAP plus surfactant	who receive CPAP plus surfactant		
		compared to infants who receive CPAP	compared to infants who receive CPAP		
		alone ¹⁴	alone ¹⁴		
			The same or better efficacy than		
			currently available surfactant provided		
			through endo tracheal tube		
6	Acceptable	Comparable to adverse events from	Lower than adverse events from current		
Ŭ	safety profile	current surfactant therapy	surfactant therany		
	Drug- dosing, route, drug administration				

7	Initiation time	If treatment of infant with RDS is started	If treatment of infant with RDS is started 48-72 hours after birth it will still have
		maximum effect	maximum effect
8	Frequency	Needs no more than 4 doses for	Needs only one dose for maximum
0	rrequency	maximum effect	effect
9	Dose	Dosing is mg/kg body weight	Dose is independent of body weight or
	2000		calculated in 'bands' of body weight (e.g.
			<0.5kg, 0.6-1.0kg, 1.1-1.5kg etc.)
10	Interruptions to	Interruptions of NRS device (e.g. CPAP)	NRS device (e.g. CPAP) use must not be
	NRS device	must be < 5 minutes	interrupted
11	Time of onset of	Must have measurable clinical	Must have measurable clinical
	effect	improvement within 60 min of treatment	improvement within 15 min of
		completion	treatment completion
12	Time of onset of	Must achieve maximum benefit within 6	Must achieve maximum benefit within 2
	maximum	hours of treatment completion	hours of treatment completion
	benefit		
13	Deposition /	Must achieve at least 15% deposition in	Must achieve at least 30% deposition in
	delivery of dose	alveoli (distal lung region/parenchyma)	alveoli (distal lung region/ parenchyma)
	Formulation		
	Shelf life	Shelf-life stability at least 24 months at 2-	Shelf-life stability at least 36 months in
		8 deg C	hot and humid conditions (defined as
14			<u>></u> 30 deg C, 75% relative humidity)
		In-use stability at least 60 minutes in hot	In-use stability at least 120 minutes in
		and humid conditions (defined as \geq 30	hot and humid conditions (defined as
		deg C, 75% relative humidity)	<u>></u> 30 deg C, 75% relative humidity)
15	Composition	Animal derived or synthetic	Synthetic
16	Paul autor	Drug product and device must be	Same as minimal
	Раскадіпд	packaged separately	
17	Shipping	Drug must be capable of being shipped	Drug plus aerosolisation device and its
		by road, rail, air or sea maintaining cold	final packaging must be capable of being
		chain	shipped by road, rail, air or sea with no
			cold chain requirement
		Aerosolisation device and packaging must	
		be capable of being shipped by road, rail,	
		air or sea with no cold chain requirement	
18	Disposal	Must be disposable using established	Same as minimal
		pharmaceutical waste streams	
10	Device	The expection device we at he	Como os minimal
19	Development	Ine aerosolisation device must be	Same as minimal
	stanuarus	appropriate regulatory guidence and	
		appropriate regulatory guidance and	
20	Power & IT	The aerosolisation device must work	The aerosolisation device must not
20	requirements	using an external nower source i.e.	require an external nower source (i.e.
	requirements	nlugged into source of electricity	source of electricity) e.g. can work with
		probled into source of electricity	batteries
21	Handedness	The aerosolisation device must be	Same as minimal
		capable of being used by both right &	
		left-handed users	

22	Size / weight	Device must be compact, easy to use and	Same as minimal	
		comfortably transported		
23	Ease of	The skills and training required to	The skills and training required to	
	operation	operate the aerosolisation device must	operate the aerosolisation device must	
		be equivalent to a medical doctor with	be equivalent to nurse, medical	
		training in neonatal care, paediatrician,	assistant, clinical assistant, medical	
		or neonatologist	doctor, paediatrician or neonatologist	
24	Device steps	Aerosolisation device must be easy to	Aerosolisation device must be easy to	
	required for use	operate with minimal training and take <	operate with minimal training and take	
		10 min of person time to set up	≤5 min of person time to set up	
25	Unit dosing	Aerosolisation device must ensure only	Same as minimal	
		one unit dose can be administered at a		
		time		
26	Functioning	Must meet standards for NRS and	Must meet standards for NRS and	
	_	nebulization devices. It must function for	nebulization devices. It must function for	
		at least 2 years with daily use	at least 5 years with daily use.	
27	Reusability	The aerosolisation device must be able to	Same as minimal	
		be used for multiple patients using an		
		appropriate cleaning and disinfecting		
		regimen		
	Purchasing considerations			
28	Cost of drug only	<\$50 per dose delivered	<\$5 per dose delivered	
20	Total nations	(220 nor hohy	ctor nor holy	
29	i otal patient	<\$220 per baby	<>25 per baby	
	COSTS			

REFERENCES

1. Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, Prieto-Merino D, Cousens S, Black RE, Liu L. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022 Feb;6(2):106-115. doi: 10.1016/S2352-4642(21)00311-4. Epub 2021 Nov 17.

2. Chawanpaiboon S, Vogel JP, Moller AB, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019;7(1):e37-e46.

3. Ho JJ, Subramaniam P, Davis PG. Continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. *Cochrane Database Syst Rev* 2020; **10**(10): CD002271.

4. Ho JJ, Subramaniam P, Sivakaanthan A, Davis PG. Early versus delayed continuous positive airway pressure (CPAP) for respiratory distress in preterm infants. *Cochrane Database Syst Rev* 2020; **10**(10): CD002975.

5. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020 Dec 25;12(12):CD004454. doi: 10.1002/14651858.CD004454.pub4.

6. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012 Nov 14;11(11):CD001456. doi: 10.1002/14651858.CD001456.pub2.

7. Abdel-Latif ME, Davis PG, Wheeler KI, De Paoli AG, Dargaville PA. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev. 2021 May 10;5(5):CD011672. doi:

10.1002/14651858.CD011672.pub2.

8. World Health Organization. WHO recommendations on interventions to improve preterm birth outcomes, 2015.

9. World Health Organization Model List of Essential Medicines, 21st List, 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IG.

10. Devi U, Roberts KD, Pandita A. A systematic review of surfactant delivery via laryngeal mask airway, pharyngeal instillation, and aerosolisation: Methods, limitations, and outcomes. Pediatr Pulmonol. 2022 Jan;57(1):9-19. doi: 10.1002/ppul.25698. Epub 2021 Sep 29. PMID: 34559459.

11. Gaertner VD, Thomann J, Bassler D, Rüegger CM. Surfactant Nebulization to Prevent Intubation in Preterm Infants: A Systematic Review and Meta-analysis. Pediatrics. 2021 Nov;148(5):e2021052504. doi: 10.1542/peds.2021-052504. Epub 2021 Oct 28. PMID: 34711678.

12. Bill and Melinda Gates Foundation. Drug + Device – Intervention Target Product Profile. Noninvasive lung surfactant indicated for the rescue treatment of Respiratory Distress Syndrome in premature infants. Version: V1.0 07-Jul-2020 Disease Area: MNCH D&T. 2021.

World Health Organization. Survive and thrive: transforming care for every small and sick newborn. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO.
Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress

syndrome. Cochrane Database Syst Rev. 2009 Apr 15;(2):CD007836. doi: 10.1002/14651858.CD007836. PMID: 19370695.