

1

2 **1.2.1. MELTING TEMPERATURE AND MELTING RANGE**

3 **Draft proposal for inclusion in *The International Pharmacopoeia***

4 (July 2023)

5 **DRAFT FOR COMMENTS**

A large, faint grey 'X' mark is positioned in the upper right corner of the page.

Please submit your comments through the online platform, PleaseReview™ (<https://who.pleasereview.net/Main/Default.aspx?action=loaddocument&reviewid=199>) If not registered or included in our mailing list, kindly submit your request with your full name, email address and organization/affiliation to jonessi@who.int, nsp@who.int.

For any technical queries, please contact **Dr Herbert Schmidt**, Technical Officer, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications (schmidth@who.int), with a copy to Ms Sinéad Jones (jonessi@who.int, nsp@who.int).

Comments should be submitted through the online platform on or by **28 September 2023**. Please note that only comments received by this deadline will be considered for the preparation of this document.

Our working documents are sent out electronically and uploaded into PleaseReview™. The working documents are also placed on the WHO Medicines website (<https://www.who.int/teams/health-product-and-policy-standards/standards-and-specifications/pharmaceuticals/working-documents-public-consultation>) under the “Working documents in public consultation”. If you wish to receive all our draft guidelines during the course of the year, please send your full name, organization/ affiliation, and email address to jonessi@who.int, nsp@who.int and your name will be added to our electronic mailing list and review platform.

6

7 © World Health Organization 2023

8

9 All rights reserved.

10

11 This is a draft. The content of this document is not final, and the text may be subject to revisions before publication. The
12 document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in
13 whole, in any form or by any means without the permission of the World Health Organization.

14

15 Please send any request for permission to: Ms Sinéad Jones, Norms and Standards for Pharmaceuticals, Technical Standards
16 and Specifications, Department of Health Products Policy and Standards, World Health Organization, CH-1211 Geneva 27,
17 Switzerland, email: jonessi@who.int.

18

19 The designations employed and the presentation of the material in this draft do not imply the expression of any opinion
20 whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or
21 of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate
22 border lines for which there may not yet be full agreement.

23

24 The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or
25 recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and
26 omissions excepted, the names of proprietary products are distinguished by initial capital letters.

27

28 All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft.
29 However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility
30 for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for
31 damages arising from its use.

32

33 This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.

34

35 SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/22.916

36 **1.2.1. MELTING TEMPERATURE AND MELTING RANGE**

37

Description	Date
First draft prepared by the Secretariat of <i>The International Pharmacopoeia</i> .	June 2022
Discussion at the Consultation on Quality Control and Pharmacopoeial Specifications for Medicines	April 2023
Public consultation of the draft revision.	July – September 2023
Further follow-up action as required.	

38

39 *[Note from the Secretariat. The World Health Organization (WHO) provides Melting*
40 *Point Reference Substances for the calibration of instruments to determine melting*
41 *points. The appropriate use of such reference substances is considered essential for*
42 *achieving true and comparable results and is thus required as per Good Laboratory*
43 *Practices and Good Manufacturing Practices.*

44 *WHO is seeking comments on the draft proposal for revision of chapter 1.2.1 Melting*
45 *temperature and melting range in The International Pharmacopoeia. Comments on the*
46 *proposed changes to the text are welcome – also proposes for information/aspects so*
47 *far not included but deemed necessary. Changes to the current chapter are indicated*
48 *by insert or delete.*

49 *In addition, WHO is inviting laboratories to participate in an inter-laboratory study to*
50 *establish new batches of melting point ICRS. Participants will be provided with three*
51 *reference substances to calibrate their instruments plus one reference substance to*
52 *verify the calibration and will be asked to determine the melting points of four*

53 *candidate reference substances. Participation in the study is for free. The results are
54 statistically evaluated and a report of the findings will be circulated.*

55 *Participation in inter-laboratory studies is advantageous for laboratories: such
56 studies increase confidence in a laboratory's results and among all the laboratories
57 involved in comparison testing.*

58 *The invitation to participate is addressed to the following laboratories:*

- 59 • *laboratories associated with other pharmacopoeias or organizations providing
60 reference substances for the calibration of melting point instruments;*
- 61 • *manufacturers of melting point instruments;*
- 62 • *WHO Collaborating Centres;*
- 63 • *quality control laboratories included on the WHO List of Prequalified
64 Medicines Quality Control Laboratories;*
- 65 • *laboratories of manufacturers of WHO prequalified medicines; and*
- 66 • *accredited national quality control laboratories.*

67 *If you wish to participate in the study, kindly contact Dr Herbert Schmidt (at
68 schmidth@who.int.)]*

69

70

71 **1.2.1. Melting temperature and melting range**

72 **A. Determination of melting temperature and melting range of pulverizable
73 substances**

74 The *melting range* of a solid substance is the range between the corrected
75 temperature at which the substance begins to collapse or forms droplets on the
76 wall of a transparent glass capillary tube and the corrected temperature at
77 which it is completely melted, as shown by the disappearance of the solid
78 phase.

79 The statement in a monograph "melting range *a-b* °C" means that the melting
80 range determined by the method below must fall within these limits.

81 The *melting temperature* of a substance is the corrected temperature at which
82 the solid substance is completely melted to a liquid or a decomposed state.

83 **Apparatus**

84 A suitable apparatus for the determination consists of a controlled source of
85 heat, either a metal heating block with one or more compartments for capillary
86 tubes or a glass vessel with an appropriate liquid and fitted with a suitable
87 means of heating and stirring. The apparatus is equipped with a temperature
88 sensor or a suitable certified thermometer allowing readings at least to the
89 nearest 0.1 °C. A suitable apparatus for the determination consists of a glass
90 vessel with appropriate liquid, a controlled source of heat, a thermometer, a
91 capillary tube and a magnifying glass. The glass vessel should have a suitable
92 construction, contain an appropriate liquid and be fitted with a stirring device
93 capable of rapid mixing of the liquid (certain liquid silicones are suitable).

94 The controlled source of heat should be capable of raising the temperature of
95 the sample liquid heating medium at the required rate at a rate of 1 °C/min or
96 less.

97 Standardized thermometers should cover the range -10 to +360 °C, the length
98 of one degree on the scale being not less than 0.8 mm. ~~These thermometers~~
99 ~~should preferably be of the mercury in glass, solid stem type with a cylindrical~~
100 ~~bulb and made of approved thermometric glass suitable for the range covered;~~
101 ~~each thermometer should have a safety chamber.~~

102 Thermometers used for determination of melting temperatures may be
103 calibrated for total or partial immersion. A *total-immersion thermometer* should
104 read correctly when it is immersed at least to the end of the liquid column in
105 the medium, the temperature of which is to be measured. A *partial-immersion*
106 *thermometer* should read correctly when it is immersed to a prescribed depth
107 and when the emergent liquid column is under prescribed conditions. When
108 total-immersion thermometers are used partially immersed, an auxiliary
109 thermometer is required for the determination of the emergent-stem correction.
110 These two thermometers should be surrounded with a glass tube above the
111 surface of the heating material.

112 Samples are introduced into the equipment in glass ~~The capillary tubes should~~
113 ~~be made of borosilicate glass, closed at one end, and have the following~~
114 ~~dimensions: thickness of the wall, about 0.10–0.15 mm; length, suitable for the~~
115 ~~apparatus used; internal diameter, 0.9–1.1 mm. The dimensions are chosen~~
116 ~~according to the manufacturer's requirements, typically with an external~~
117 ~~diameter of 1.3–1.5 mm and a wall thickness of 0.1–0.3 mm. In some,~~
118 ~~apparatus glass slides are used instead of capillary tubes.~~

119 In case of visual detection, a suitable magnifying glass should be used for
120 observation of the capillary tube.

121 Other apparatus or methods may be used provided they are capable of equal
122 accuracy and have been calibrated against the method of *The International*
123 *Pharmacopoeia* by means of the WHO Melting Point Reference Substances.

124 **Recommended procedure**

125 Spread a small quantity of the finely powdered substance in a thin layer and dry
126 it in a vacuum desiccator over silica gel, desiccant, R, phosphorus pentoxide R
127 or other suitable desiccant for 24 hours, or at a temperature specified in the
128 monograph.

129 Transfer a quantity of the dried powder to a dry capillary tube and pack the
130 powder carefully by tapping the tube on a hard surface (ensure the capillary
131 tube bottom is not damaged or cracked). Pack the sample column tightly to a
132 height of about 4-6 3 mm. Coarse crystals are to be avoided as they might lead
133 to false results. If necessary, crush the sample into a fine powder. Introduce the
134 capillary tube into the controlled source of heat heated bath at a temperature of
135 5 °C below the expected lower limit of the melting range, the rise of
136 temperature being regulated beforehand to 1 °C per minute, unless either the
137 temperature of the introduction of the capillary tube into the bath or the rate of
138 temperature rise are otherwise specified in the monograph. If a bath with a
139 suitable liquid is used, the The capillary tube should be fitted in the bath in
140 such a way that its closed end is at the level of the middle of the bulb of the
141 standard thermometer.

142 When a thermometer calibrated for partial immersion is used, care must be
143 taken that it is immersed exactly to its immersion mark when the readings are
144 taken.

145 Unless otherwise specified in the monograph, readings are taken of the
146 temperature at which the substance is observed to collapse or form droplets on
147 the wall of the tube and of the temperature at which it is completely melted as
148 indicated by the disappearance of the solid phase. In case of instrumental
149 detection, follow the instrument manufacturer's requirements for the
150 determination of the melting point.

151 To the temperature readings, add the correction for deviation of the standard
152 thermometer. When thermometers calibrated for total immersion are used and
153 partially immersed, also add to the readings of the standard thermometer the
154 emergent-stem correction, which is obtained as follows:

155 Before starting the determination of the melting range, an auxiliary
156 thermometer is attached so that the bulb touches the standard thermometer at a
157 point midway between the graduation for the expected melting point and the
158 surface of the heating material. When the substance has melted, the
159 temperature is read on the auxiliary thermometer. The correction to be added to
160 the temperature reading of the standard thermometer is calculated from the
161 following formula:

162 $0.00015 N(T-t)$

where T is the temperature reading of the standard thermometer;
 t is the temperature reading of the auxiliary thermometer;
 N is the number of degrees of the scale of the standard thermometer between
the surface of the heating material and the level of the mercury.

163 When needed, the emergent-stem correction for thermometers calibrated for
164 partial immersion may be calculated from the same formula as above, but
165 replacing T by T_s , which is the mean temperature of the emergent-stem of the
166 thermometer at the time of calibration.

167 Both the above-mentioned corrections for emergent-stem and any deviation of
168 the standard thermometer may conveniently be replaced by calibration of the
169 apparatus by means of the WHO Melting Point Reference Substances.

170

171

172 **System suitability**

173 Carry out a system suitability test before the measurements, for example, by
174 choosing a suitable reference material with a melting point close to that
175 expected for the test substance.

176 **B. Determination of melting point of low melting solids**

177 The melting point of fats, waxes, etc. is the corrected temperature at which the
178 column of substance in the capillary tube becomes transparent or moves
179 upwards, when tested by the method described below.

180 **Apparatus**

181 A similar apparatus to the glass vessel with an appropriate liquid, as that
182 described under A for the determination of melting temperature and melting
183 range of pulverizable substances, should be used with the following
184 modifications:

185 – water should be used in the heating vessel;
186 – an accurately standardized thermometer should cover the range -10 to
187 +100 °C; and
188 – a glass capillary tube should ~~have the same dimensions as described under A~~
189 ~~but be open at both ends; soft glass capillary tubes may be used, open at both~~
190 ~~ends, about 80 mm long, having an external diameter of 1.4 mm to 1.5 mm and~~
191 ~~an internal diameter of 1.0 mm to 1.2 mm.~~

192 **Recommended procedure**

193 Unless otherwise specified in the monograph, melt the substance at as low a
194 temperature as possible and then suck the liquid up to a height of about 10 mm
195 in the capillary tube. Cool the charged tube at 10 °C or lower for 24 hours. If

196 the monograph specifies that the melting temperature is to be determined
197 without previous melting of the substance, charge the capillary tube by pushing
198 it into the unmelted substance so that a column about 10 mm long is forced in.
199 The determination may then be immediately carried out.

200 Attach the tube to the thermometer in the water bath by means of a rubber band
201 or otherwise so that the lower end of the capillary tube is at the level of the
202 middle of the bulb of the thermometer and the distance between the lower end
203 of the capillary tube and the water level is about 20 mm. Heat the bath with
204 constant stirring, the heating being regulated so that the temperature rises, at a
205 temperature of 5 °C below the expected melting temperature, which is about
206 1 °C per minute.

207 **C. Qualification of the equipment**

208 The qualification is carried out periodically according to the instrument
209 manufacturer's requirements, using WHO Melting Point Reference Substances.
210 These are selected to cover the temperature range that is used on the
211 equipment. Use capillary tubes with the same dimensions as those used for
212 sample measurement.

213 WHO Melting Point Reference Substances.

Substance	Assigned melting point ¹
Azobenzene	<u>Biphenyl M.P.</u> 68.9/[to be assigned] °C
Vanillin M.P.	83.2 °C
Benzil M.P.	95.9 °C
Acetanilide M.P.	115.7 °C
Phenacetin M.P.	136.0 °C
Benzanilide M.P.	164.7 °C
Sulfanilamide M.P.	165.9 °C

Sulfapyridine M.P.	192.7 °C
Dicyanodiamide M.P.	210.2 °C
Saccharin M.P.	230.0 °C
Caffeine M.P.	237.2 °C
Phenolphthalein M.P.	263.1 °C

214 ¹ The exact melting points assigned to the substances can be found in the
215 leaflets accompanying the standards.

216 These substances are available from the WHO collaborating host organization
217 for International Chemical Reference Substances: European Directorate for the
218 Quality of Medicines & HealthCare, 7 allée Kastner, CS 30026, F-67081
219 Strasbourg, France; fax: +33 (0)3 88 41 27 71 – for the attention of EDQM
220 Sales Section; email: orders@edqm.eu; website: <http://www.edqm.eu> .

221
