POWDERS FOR INHALATION

(PULVIS AD INHALATIONEM)

Draft proposal for inclusion in The International Pharmacopoeia

(July 2020)

DRAFT FOR COMMENTS

Please send any comments you may have on this draft working document to Dr Herbert Schmidt, Technical Officer, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications (schmidt@who.int) by 14 September 2020.

Working documents are sent out electronically and they will also be placed on the WHO Medicines website (http://www.who.int/medicines/areas/quality_safety/quality_assurance/guidelines/en/) for comments under the “Current projects” link. If you wish to receive our draft guidelines, please send your e-mail address to ionessi@who.int and your name will be added to our electronic mailing list.

© World Health Organization 2020

All rights reserved.

This draft is intended for a restricted audience only, i.e. the individuals and organizations having received this draft. The draft may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means outside these individuals and organizations (including the organizations’ concerned staff and member organizations) without the permission of the World Health Organization. The draft should not be displayed on any website.

Please send any request for permission to:

Dr Sabine Kopp, Team Lead, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications, Health Products Policy and Standards Department, Access to Medicines and Health Products Division, World Health Organization, CH-1211 Geneva 27, Switzerland, email: koppins@who.int.

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft.

However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE PROPOSED ADOPTION PROCESS OF DOCUMENT QAS/20.838:

POWDER FOR INHALATION

(INHALANDA)

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text drafted.</td>
<td>March 2020</td>
</tr>
<tr>
<td>Discussion at the consultation on Screening Technologies, Laboratory Tools and Pharmacopoeial Specifications for Medicines.</td>
<td>May 2020</td>
</tr>
<tr>
<td>Draft text sent out for public consultation.</td>
<td>July - September 2020</td>
</tr>
<tr>
<td>Presentation to the 55th WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2020</td>
</tr>
<tr>
<td>Further follow-up action as required.</td>
<td></td>
</tr>
</tbody>
</table>

[Note from the Secretariat. It is proposed to include a general monograph on Powders for inhalation in The International Pharmacopoeia. The text was drafted based on the corresponding texts in the chapter Preparations for inhalation of the European Pharmacopoeia (Ph.Eur.) and the Japanese Pharmacopoeia (JP), which underwent bilateral harmonization between these pharmacopoeias. During the course of development, the text has undergone changes.]
POWDERS FOR INHALATION
(INHALANDA)

This text was drafted based on the corresponding texts in the chapters on Preparation of inhalation of the European Pharmacopoeia and the Japanese Pharmacopoeia. During the course of development, the text has undergone changes.

Definition

Powders for inhalation are solid preparations intended to be converted to aerosols and orally administered to the lung using a breath-actuated inhaler.

Powders for inhalation may be supplied in single-dose containers for use in pre-metered inhalers or in multidose containers for use in either pre-metered or device-metered powder inhalers. Pre-metered inhalers are loaded with powders pre-dispensed in capsules or other suitable dosage forms. Device-metered inhalers may use a powder reservoir where the dose is created by a metering mechanism within the inhaler.

Powders for inhalation contain one or more active pharmaceutical ingredients. To facilitate the use of powders for inhalation, the active pharmaceutical ingredients may be combined with suitable excipients, e.g. a carrier substance. These excipients do not adversely affect the functions of the mucosa of the respiratory tract or its cilia.

Additional information

The delivered dose is the dose delivered from the inhaler. For some preparations, the labelled dose has been established as a metered dose or as a pre-metered dose. The metered dose is determined by adding the amount deposited on the inhaler to the delivered dose. It may also be determined directly.

Manufacture
The manufacturing processes for powders for inhalation should meet the requirements of good manufacturing practices (GMP).

The fine-particle characteristics of the aerosol cloud generated by the powder for inhalation is controlled so that a consistent portion is deposited in the lung.

During the development of a powder for inhalation that contains an antimicrobial preservative, the effectiveness of the chosen preservative shall be demonstrated to the satisfaction of the relevant regulatory authority.

In the manufacture, packaging, storage and distribution of powders for inhalation, suitable measures are taken to ensure their microbial quality. Recommendations on this aspect are provided in the chapter titled *Microbiological quality of non-sterile products: recommended acceptance criteria for pharmaceutical preparations* in the supplementary information section.

For a multidose powder inhaler, uniformity of a delivered dose must be ensured within a device (intra-inhaler) and between devices (inter-inhaler). For intra-inhaler testing, the uniformity of delivered dose tests are described below. For inter-inhaler testing, an example of a suitable procedure is to take 10 inhalers and collect a single dose from each inhaler, collecting the dose at the beginning (from 3 inhalers), middle (from 4 inhalers) and end (from 3 inhalers) of the number of doses stated on the label. Other inter-inhaler testing procedures are possible, where justified and authorized.

Uniformity of delivered dose

Powders for inhalation comply with the following test.

The test is carried out using a dose collection apparatus that must be capable of quantitatively capturing the delivered dose. A suitable dose collection apparatus is specified in Figure 1 and Table 1.
Figure 1. Apparatus suitable for measuring the uniformity of delivered dose for powder inhalers

Table 1. Specifications of the apparatus used for powder inhalers described in Figure 1.

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sample collection tube</td>
<td>Capable of quantitatively capturing the delivered dose, e.g. dose collection tube with dimensions of 34.85 mm ID × 12 cm length (e.g. product number XX40 047 00, Millipore Corporation, Bedford, MA 01732, USA, with modified exit tube, ID ≥ 8 mm, fitted with Gelman product number 61631), or equivalent.</td>
</tr>
<tr>
<td>B</td>
<td>Filter</td>
<td>47 mm filter, e.g. A/E glass fibre filter (Gelman Sciences, Ann Arbor, MI 48106, USA), or equivalent.</td>
</tr>
<tr>
<td>C</td>
<td>Connector</td>
<td>ID ≥ 8 mm, e.g., short metal coupling, with low-diameter branch to P3.</td>
</tr>
</tbody>
</table>
Table 1. Specifications of the apparatus used for powder inhalers described in Figure 1.

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Vacuum tubing</td>
<td>A length of suitable tubing having an ID \geq 8 mm and an internal volume of 25 ± 5 mL.</td>
</tr>
<tr>
<td>E</td>
<td>2-way solenoid valve</td>
<td>A 2-way, 2-port solenoid valve having a minimum airflow resistance orifice with ID \geq 8 mm and an opening time \leq 100 ms (e.g. type 256-A08, Bürkert GmbH, 74653 Ingelfingen, Deutschland), or equivalent.</td>
</tr>
<tr>
<td>F</td>
<td>Vacuum pump</td>
<td>Pump must be capable of drawing the required flow rate through the assembled apparatus with the powder inhaler in the mouthpiece adapter (e.g. product type 1023, 1423 or 2565, Gast Manufacturing Inc., Benton Harbor, MI 49022, USA), or equivalent. Connect the pump to the 2-way solenoid valve using short and/or wide (\geq 10 mm ID) vacuum tubing and connectors to minimize pump capacity requirements.</td>
</tr>
<tr>
<td>G</td>
<td>Timer</td>
<td>Timer capable of driving the 2-way solenoid valve for the required time period (e.g. type G814, RS Components International, Corby, NN17 9RS, UK), or equivalent.</td>
</tr>
<tr>
<td>P1</td>
<td>Pressure tap</td>
<td>2.2 mm ID, 3.1 mm OD, flush with internal surface of the sample collection tube, centred and burr-free, 59 mm from its inlet. The pressure tap P1 must never be open to the atmosphere. Differential pressure to atmosphere is measured at P1.</td>
</tr>
<tr>
<td>P2</td>
<td>Pressure measurements</td>
<td>Absolute pressures.</td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Specifications of the apparatus used for powder inhalers described in Figure 1.

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Flow control valve</td>
<td>Adjustable regulating valve with maximum Cv ≥ 1 (e.g. type 8FV12LNSS, Parker Hannifin plc., Barnstaple, EX31 1NP, UK), or equivalent.</td>
</tr>
</tbody>
</table>

Unless otherwise stated, determine the test flow rate and duration using the dose collection tube, the associated flow system, a suitable differential pressure meter and a suitable volumetric flowmeter, calibrated for the flow leaving the meter, according to the following procedure.

Prepare the inhaler for use as directed in the instructions to the patient and connect it to the inlet of the apparatus using a mouthpiece adapter to ensure an airtight seal. Use a mouthpiece adapter that ensures that the front face of the inhaler mouthpiece is flush with the front face of the sample collection tube. Connect one port of a differential pressure meter to the pressure reading point P1 in Figure 1, and let the other be open to the atmosphere. Switch on the pump, open the 2-way solenoid valve and adjust the flow control valve until the pressure drop across the inhaler is 4.0 kPa (40.8 cm H₂O) as indicated by the differential pressure meter. Remove the inhaler from the mouthpiece adapter and, without touching the flow control valve, connect a flowmeter to the inlet of the sampling apparatus. Use a flowmeter calibrated for the volumetric flow leaving the meter, or calculate the volumetric flow leaving the meter \((Q_{out})\) using the ideal gas law. For a meter calibrated for the entering volumetric flow \((Q_{in})\), use the following expression:

\[
Q_{out} = \frac{Q_{in} \times P_0}{P_0 - \Delta P}
\]

\(P_0\) = atmospheric pressure;
\(\Delta P\) = pressure drop over the meter.
If the flow rate is above 100 L/min, adjust the flow control valve to obtain a flow rate of 100 L/min (± 5 %). Note the volumetric airflow rate exiting the meter and define this as the test flow rate, Q_{out}, in litres per minute. Define the test flow duration, T, in seconds so that a volume of 4 L of air is drawn from the mouthpiece of the inhaler at the test flow rate, Q_{out}.

Ensure that critical flow occurs in the flow control valve by the following procedure: with the inhaler in place and the test flow rate Q_{out}, measure the absolute pressure on both sides of the control valve (pressure reading points P2 and P3 in Figure 1); a ratio P3/P2 of less than or equal to 0.5 indicates critical flow; switch to a more powerful pump and re-measure the test flow rate if critical flow is not indicated.

Pre-metered inhalers. Connect the inhaler to the apparatus using an adapter that ensures a good seal. Draw air through the inhaler using the predetermined conditions. Repeat the procedure until the number of deliveries that constitute the minimum recommended dose have been sampled. Quantitatively collect the contents of the apparatus and determine the amount of active substance. Repeat the procedure for a further 9 doses.

Device-metered inhalers. Connect the inhaler to the apparatus using an adapter that ensures a good seal. Draw air through the inhaler under the predetermined conditions. Repeat the procedure until the number of deliveries that constitute the minimum recommended dose have been sampled. Quantitatively collect the contents of the apparatus and determine the amount of active substance. Repeat the procedure for a further 2 doses.

Discharge the inhaler to waste until $(n/2) + 1$ deliveries remain, where n is the number of deliveries stated on the label. If necessary, store the inhaler to discharge electrostatic charges. Collect 4 doses using the procedure described above.

Discharge the inhaler to waste until 3 doses remain. If necessary, store the inhaler to discharge electrostatic charges. Collect 3 doses using the procedure described above.
For preparations containing more than 1 active substance, carry out the test for uniformity of delivered dose for each active substance.

Requirements. The preparation complies with the test if 9 out of 10 results lie between 75% and 125% of the mean value and all lie between 65% and 135%. If 2 or 3 values lie outside the limits of 75% to 125%, repeat the test for 2 more inhalers. Not more than 3 of the 30 values lie outside the limits of 75% to 125% and no value lies outside the limits of 65% to 135%.

In justified and authorized cases, these ranges may be extended but no value should be greater than 150% or less than 50% of the mean value. Unless otherwise authorized, the mean value must be between 85% and 115% of the label claim for delivered dose.

Fine particle dose

Using a suitable and authorized method, calculate the fine particle dose.

Number of deliveries per inhaler for multidose inhalers (this test may be combined with the test for Uniformity of delivered dose).

Using the method described in the test for Uniformity of delivered dose above, discharge doses from the inhaler until empty, at the predetermined flow rate. Record the deliveries discharged.

Requirements. The total number of deliveries so discharged from the inhaler is not less than the number stated on the label.

Labelling

Every pharmaceutical preparation must comply with the labelling requirements established under Good Manufacturing Practice.

The label should include:

(1) the name of the pharmaceutical product;
(2) the name(s) of the active ingredients; International Nonproprietary Names (INNs) should be used wherever possible;

(3) the amount of active ingredient in the delivered dose or, if justified and authorized (e.g. where the dose has been established as a metered dose or as a pre-metered dose), the metered dose or the pre-metered dose;

(4) where applicable, the number of deliveries from the inhaler to provide the minimum recommended dose;

(5) the number of deliveries per inhaler

(6) the name and concentration of any antimicrobial preservative and the name of any other excipient;

(7) the batch (lot) number assigned by the manufacturer;

(8) the expiry date and, when required, the date of manufacture;

(9) any special storage conditions or handling precautions that may be necessary;

(10) directions for use, warnings, and precautions that may be necessary; and

(11) the name and address of the manufacturer or the person responsible for placing the product on the market.
