HYDROXYPROPYLENCHELULOSE, LOW-SUBSTITUTED

(HYDROXYPROPYLENCHELULOSUM SUBSTITUTUM HUMILE)

Draft proposal for inclusion for The International Pharmacopoeia

(August 2020)

DRAFT FOR COMMENTS

Please send any comments you may have on this draft working document to Dr Herbert Schmidt, Technical Officer, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications (email: schmidt@who.int) by 31 October 2020.

Working documents are sent out electronically and they will also be placed on the WHO Medicines website (http://www.who.int/medicines/areas/quality_safety/quality_assurance/guidelines/en/) for comments under the “Current projects” link. If you wish to receive our draft guidelines, please send your e-mail address to jonesi@who.int and your name will be added to our electronic mailing list.

© World Health Organization 2020

All rights reserved.

This is a draft. The content of this document is not final, and the text may be subject to revisions before publication. The document may not be reviewed, abstracted, quoted, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means without the permission of the World Health Organization.

Please send any request for permission to:

Dr Sabine Kopp, Group Lead, Norms and Standards for Pharmaceuticals, Technical Standards and Specifications, Department of Health Products Policy and Standards, World Health Organization, CH-1211 Geneva 27, Switzerland (email: kopps@who.int).

The designations employed and the presentation of the material in this draft do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by the World Health Organization to verify the information contained in this draft. However, the printed material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.

This draft does not necessarily represent the decisions or the stated policy of the World Health Organization.
SCHEDULE FOR THE ADOPTION PROCESS OF DOCUMENT QAS/20.858:

HYDROXYPROPYLCELLULOSE, LOW-SUBSTITUTED

(HYDROXYPROPYLCELLULOSUM SUBSTITUTUM HUMILE)

<table>
<thead>
<tr>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monograph drafted based on the corresponding, internationally-harmonized text developed by the Pharmacopoeial Discussion Group.</td>
<td>August 2020</td>
</tr>
<tr>
<td>Draft monograph sent out for public consultation.</td>
<td>August – October 2020</td>
</tr>
<tr>
<td>Presentation to the 55th WHO Expert Committee on Specifications for Pharmaceutical Preparations.</td>
<td>October 2020</td>
</tr>
<tr>
<td>Further follow-up action as required.</td>
<td></td>
</tr>
<tr>
<td>Monograph drafted based on the corresponding, internationally-harmonized text developed by the Pharmacopoeial Discussion Group.</td>
<td>August 2020</td>
</tr>
</tbody>
</table>

(Note from the Secretariat. It is proposed to include the monograph on Hydroxypropylcellulose, low-substituted in The International Pharmacopoeia.

The monograph is based on the corresponding, internationally-harmonized text developed by the Pharmacopoeial Discussion Group (PDG). Editorial modifications have been made in order to be in line with the style used in The International Pharmacopoeia.)
HYDROXYPROPYLCELLULOSE, LOW-SUBSTITUTED
(HYDROXYPROPYLCELLULOSUM SUBSTITUTUM HUMILE)

This monograph is based on the corresponding, internationally-harmonized text developed by the Pharmacopoeial Discussion Group (PDG). Editorial modifications have been made in order to be in line with the style used in The International Pharmacopoeia.

Description. White or yellowish-white powder or granules.

Solubility. Practically insoluble in ethanol (~750 g/L) TS. Dissolves in a dilute solution of sodium hydroxide producing a viscous solution. Swells in water, in sodium carbonate (106 g/L) TS and in hydrochloric acid (~206 g/L) TS.

Category. Disintegrant; binder.

Storage. Low-substituted hydroxypropylcellulose should be kept in an airtight container.

Additional information. Low-substituted hydroxypropylcellulose is hygroscopic.

Requirements

Definition. Low-substituted hydroxypropylcellulose is a cellulose in which a low proportion of the hydroxyl groups have been replaced by 2-hydroxypropoxy groups. It contains not less than 5.0% and not more than 16.0% of hydroxypropoxy groups (–OCH₂CHOHCH₃), calculated with reference to the dried substance.
Identity tests

A. Carry out the test as described under 1.7 Spectrophotometry in the infrared region. The infrared absorption spectrum is concordant with the spectrum obtained from low-substituted hydroxypropylcellulose RS or with the reference spectrum of low-substituted hydroxypropylcellulose.

B. Shake 0.1 g thoroughly with 10 mL of water R; it does not dissolve.

C. To the suspension obtained in test B, add 1 g of sodium hydroxide R and shake until it becomes homogeneous. Transfer 5 mL of the solution to a suitable container, add 10 mL of a mixture of 1 volume of methanol R and 4 volumes of acetone R, and shake; a white, flocculent precipitate is formed.

pH value (1.13). Evenly distribute 1.0 g onto the surface of 100 mL of carbon-dioxide-free water R and stir using a magnetic stirrer. pH of the suspension, 5.0 to 7.5.

Loss on drying. Dry 1.000 g of the test substance at 105 °C for 1 hour; it loses not more than 50 mg/g.

Sulfated ash (2.3). Determine on 1.0 g using Method B; not more than 0.8 mg/g.

Assay. Carry out the test as described under 1.14.5 Gas chromatography using the internal standard method.

Use a fused-silica column (30 m × 0.53 mm) which is coated with polydimethylsiloxane R (3 μm). If necessary, also use a precolumn. Maintain the temperature of the column at 50 °C for 3 minutes. Increase the temperature at a rate of 10 °C per minute to 100 °C, and then at a rate of 37.5 °C per minute to 250 °C, and maintain it at this temperature for 8 minutes. Maintain the temperature of the injection port and the detector at 250 °C and 300 °C, respectively. Use helium R as the carrier gas at an appropriate pressure with a flow rate of 4.3 mL per minute. Use a split ratio of 1:40. Use either a flame-ionization detector or a thermal conductivity detector.
Prepare an internal standard solution containing 30 mg/mL of octane R in o-xylene R.

Use the following apparatus in the preparation of solutions (1) and (2):

- **Reaction vial.** A 5 mL pressure-tight vial, 50 mm in height, 20 mm in external diameter and 13 mm in internal diameter at the mouth, equipped with a pressure-tight butyl rubber membrane stopper coated with polytetrafluoroethylene and secured with an aluminium crimped cap or another sealing system providing a sufficient air-tightness.

- **Heater.** A heating module with a square aluminium block having holes 20 mm in diameter and 32 mm in depth, so that the reaction vials fit; mixing of the contents of the vial is effected using a magnetic stirrer equipped in the heating module or using a reciprocal shaker that performs approximately 100 cycles/minute.

Prepare the solutions as follows: For solution (1), weigh 65.0 mg of the substance to be examined, place in a reaction vial, add 0.06-0.10 g of adipic acid R, 2.0 mL of the internal standard solution and 2.0 mL of hydriodic acid R1, immediately cap and seal the vial, and weigh accurately. Mix the contents of the vial continuously for 60 minutes while heating the block so that the temperature of the contents is maintained at 128 °C to 132 °C. If a reciprocal shaker or magnetic stirrer cannot be used, shake the vial thoroughly by hand at 5 minute intervals during the initial 30 minutes of the heating time. Allow the vial to cool, and again weigh accurately. If the loss of mass is less than 26 mg and there is no evidence of a leak, use the upper layer of the mixture. For solution (2), place 0.06-0.10 g of adipic acid R, 2.0 mL of the internal standard solution and 2.0 mL of hydriodic acid R in another reaction vial, cap and seal the vial, and weigh accurately. Add 15-22 µL of isopropyl iodide R through the septum with a syringe, and weigh accurately. Shake the reaction vial thoroughly and use the upper layer.

Inject separately 1-2 µL each of solutions (1) and (2) and record the chromatograms.
In the chromatogram obtained with solution (2), the peak for the analyte isopropyl iodide is eluted at a relative retention of about 0.8 with reference to octane (retention time about 8 minutes). The test is not valid unless the resolution between the peaks corresponding to isopropyl iodide and octane in the chromatogram obtained with solution (2) is at least 5.0. The test is also not valid if the maximum relative standard deviation for the ratio of the area of the peak due to isopropyl iodide to that due to octane in the chromatogram obtained with solution (2) determined on 6 injections is not more than 2.0%.

Calculate the ratio \(Q \) of the area of the peak due to isopropyl iodide to the area of the peak due to the internal standard from the chromatogram obtained with solution (A), and the ratio \(Q_1 \) of the area of the peak due to isopropyl iodide to the area of the peak due to the internal standard from the chromatogram obtained with solution (B). Calculate the percentage content of hydroxypropoxy groups (-OCH\(_2\)CHOHCH\(_3\)), using the following expression:

\[
\frac{Q \times m_1}{Q_1 \times m} \times \frac{M_1}{M_2} \times 100
\]

where

\[
m_1 = \text{mass of isopropyl iodide in solution (2), in milligrams;}
\]

\[
m = \text{mass of the sample (dried substance), in milligrams;}
\]

\[
M_1 = \text{molar mass of hydroxypropoxy group (75.1);}
\]

\[
M_2 = \text{molar mass of isopropyl iodide (170.0)}
\]

New reagents

Hydrochloric acid (~206 g/L) TS

Hydrochloric acid (~420 g/L) TS, dilute with water to contain 206 g of HCl in 1000 mL

Octane R
n-Octane; C₈H₁₈; CAS Reg. No. 111-65-9.

Contains not less than 99% of C₈H₁₈.

Adipic acid R

Description. Prisms.

Solubility. Freely soluble in methanol, soluble in acetone, practically insoluble in light petroleum.

Melting point. About 152 °C.

Hydriodic acid R1

Procedure. Prepare by distilling hydriodic acid over red phosphorus, passing carbon dioxide or nitrogen through the apparatus during the distillation. Use the colourless or almost colourless, constant-boiling mixture (55 per cent to 58 per cent of HI) distilling between 126 °C and 127 °C.

Storage. Store in a dark place.

Isopropyl iodide R

Content. Minimum 99 per cent.

Correction to existing reagent entry
Change the name of the entry for m-Xylene R to o-Xylene R.

New reference substance

- **Low-substituted hydroxypropylcellulose RS**
