HIGHLIGHTS

- As of 30 June, the Government of Indonesia reported 2,178,272 (21,807 new) confirmed cases of COVID-19, 58,491 (467 new) deaths and 1,880,413 recovered cases from 510 districts across all 34 provinces.¹

- The number of confirmed COVID-19 cases has been surging in the country for weeks. Java region continues to report a large increase in the number of cases and deaths. There has also been a noticeable increase in Kalimantan and Sumatra islands. Increased testing rates and strict implementation of public health and social measures (PHSM) are urgently needed, particularly in light of increased confirmation of Delta variant of concern and bed occupancy rates close to capacity in some provinces.

Fig. 1. Geographic distribution of cumulative number of confirmed COVID-19 cases in Indonesia across the provinces reported from 24 to 30 June 2021. Source of data

Disclaimer: The number of cases reported daily is not equivalent to the number of persons who contracted COVID-19 on that day; reporting of laboratory-confirmed results may take up to one week from the time of testing.

WHO Indonesia Situation Report - 61
who.int/indonesia
On 26 June, the Government of Indonesia has set a goal of administering one million doses of COVID-19 vaccine per day. President Joko Widodo instructed the National Police (Polri) and Army (TNI) to support the national vaccination drive and conduct their own vaccination programmes alongside the Ministry of Health (MoH). The one million doses campaign kicked off across the country with police stations and military posts opening vaccination sites to support the ongoing programme of health authorities and local governments.²

Cengkareng Hospital, West Jakarta and Bekasi City Hospital, West Java, two of the major hospitals designated for treatment of COVID-19 patients, reported that the intensive care units (ICU) for COVID-19 patients in the hospitals has been operating at full capacity. On 24 June, a total of 354 COVID-19 patients were treated in Cengkareng Hospital, 290 of whom were in ICU wards. In Bekasi City Hospital, a makeshift ICU with a capacity of 30 beds was set up in front of the emergency room to accommodate the surge of patients. The demand for hospital beds for COVID-19 patients has shot up in the last two weeks in several areas of Indonesia amid the recent surge of cases. This has also impacted on the demand for medical oxygen in the country.³

On 21 June, the Indonesian Paediatric Society (Ikatan Dokter Anak Indonesia (IDAI)) reported that the proportion of confirmed COVID-19 cases among children aged 0-18 years in the country is 12.5%. In addition, IDAI stated that the COVID-19 case fatality rates in children in Indonesia were 3%-5%.⁴ COVID-19 transmission among children continues to rise amid the surge of cases. On 22 June, IDAI Banten reported that the city recorded a total of 2972 COVID-19 cases among children from August 2020 until 21 June 2021.⁵ In Yogyakarta, the city health office recorded that 3227 children aged 0-10 years and 5554 teenagers aged 11-20 years have been exposed to COVID-19 as of 25 June.⁶

On 30 June, 21 807 new and 2 178 272 cumulative cases were reported nationwide (Fig. 2). The average for the last seven days from 24 to 30 June was 20 693 cases per day, compared to 13 681 cases per day reported in the previous week. This is the highest number of new confirmed cases since COVID-19 was first reported in the country.

Disclaimer: The number of cases reported daily is not the number of persons who contracted COVID-19 on that day and might be influenced by the number of people tested on that day (see Fig. 16); reporting of laboratory-confirmed results may take up to one week from the time of testing. Therefore, caution must be taken in interpreting this figure and the epidemiological curve for further analysis, either at the national or subnational level.
During the week of 21 to 27 June, nineteen provinces experienced an increase in the number of cases of more than 50% compared to the previous week, including twelve with an increase of more than 100%: Southeast Sulawesi (302%), North Maluku (279%), East Nusa Tenggara (236%), Papua (210%), Gorontalo (191%), West Papua (171%), South Sulawesi (137%), East Kalimantan (131%), West Sulawesi (112%), North Sulawesi (103%), Bali (103%), and Banten (100%) (Fig. 3). Stringent PHSM, including movement restrictions, should be considered to be urgently implemented.

Fig. 3. Percentage change of weekly number of confirmed cases by province during 21 to 27 June 2021 compared to the previous week. Source of data

Disclaimer: The number of weekly confirmed cases is calculated taking into consideration the daily number of reported cases. It is important to conduct further investigation if there is a substantial change in new cases, especially in provinces with a change of 50% or more. Other factors, such as testing and contact tracing, may help elucidate the reasons behind substantial changes. Additional indicators, including case incidence and mortality, should be considered to guide adjustment of PHSM.
During the week of 21 to 27 June, the incidence\(^7\) of COVID-19 in Indonesia increased substantially to 31.4 per 100,000 population, compared to 23.2 per 100,000 population in the previous week (Fig. 4). The incidence has been rapidly increasing in the country since mid-May and has almost reached the high of 31.5 per 100,000 reported in February.

Fig. 4. Incidence of COVID-19 per 100,000 population per week averaged over a two-week period reported in Indonesia from 13 April 2020 (when Indonesia first reported community transmission in the country) to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data

Disclaimer: There are seven categories for transmission classification: (1) no (active) cases; (2) imported/sporadic cases; (3) cluster of cases; (4) community transmission 1 (CT1); (5) community transmission 2 (CT2); (6) community transmission 3 (CT3); and (7) community transmission 4 (CT4).

Caution should be exercised when interpreting this indicator due to limitations listed in the WHO interim guidance. Other epidemiological indicators also need to be evaluated to decide on the level of community transmission. This disclaimer applies to indicators at national (Fig. 4) and subnational levels (Figs. 5 to 11).

\(^7\) Weekly incidence of COVID-19 is calculated as the number of new cases per 100,000 population per week averaged over a two-week period. Source of population data

WHO Indonesia Situation Report - 61
who.int/indonesia
During the week of 21 to 27 June, the incidence of COVID-19 per 100 000 population was 259.1 in DKI Jakarta, 103.3 in DI Yogyakarta and 88.8 in Riau Islands. These rates correspond to community transmission (CT) level 4 in DKI Jakarta and CT level 3 in DI Yogyakarta and Riau Islands (Fig. 5). Based on WHO interim guidance, this means there is a high to very high risk of COVID-19 infection for the general public and a high to very high number of locally acquired, widely dispersed cases detected in the past 14 days.

Fig. 5. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period by province in Indonesia during 21 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
During the week of 21 to 27 June, the weekly incidence of COVID-19 increased in all provinces in Java and Bali, compared to the incidence in the previous week (Fig. 6). There has been a spike in incidence in June in Java, with DKI Jakarta, Central Java and DI Yogyakarta currently reporting the highest incidence rates in each province, respectively, since March 2020.

Fig. 6. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period in Java - Bali, from 13 April 2020 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
In Sumatra, the weekly incidence of COVID-19 increased in North Sumatra, Jambi, Bengkulu, Lampung and Riau Islands during the week of 21 to 27 June compared to the previous week. There has been an increasing trend in incidence since April in most provinces in Sumatra. In particular, Riau Islands has experienced a consistent and substantial increase in weekly incidence since mid-March (Fig. 7).

Fig. 7. Incidence of COVID-19 per 100,000 population per week averaged over a two-week period in Sumatra, from 13 April 2020 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence.

Source of data
During the week of 21 to 27 June, the weekly incidence of COVID-19 in Kalimantan increased in West Kalimantan, Central Kalimantan, East Kalimantan and North Kalimantan, compared to the incidence of the previous week. Since the beginning of 2021, there has been a notable increasing trend in West Kalimantan (Fig. 8).

Fig. 8. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period in Kalimantan, from 13 April 2020 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
In Sulawesi, the weekly incidence of COVID-19 increased in all provinces during the period of 21 to 27 June, compared to the previous week (Fig. 9).

Fig. 9. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period in Sulawesi, from 13 April 2020 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
During the week of 21 to 27 June, the weekly incidence of COVID-19 increased substantially in Maluku, North Maluku, Papua and West Papua compared to the previous week (Fig. 10).

Fig. 10. Incidence of COVID-19 per 100,000 population per week averaged over a two-week period in West Nusa Tenggara, East Nusa Tenggara, Maluku, North Maluku, Papua, and West Papua, from 13 April 2020 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
Nationwide test positivity proportion increased sharply after 23 November and reached a peak of 30.5% in mid-February. Subsequently, the positivity proportion declined and stood between 9% and less than 20% from 11 March, which is considered CT3 (high incidence), with a rapid increase in June. The positivity proportion has now returned to CT4 (very high incidence), with 20.0% reported on 27 June (Fig. 11). However, the percentage of positive samples can be interpreted reliably only with comprehensive surveillance and testing in the order of one person tested per 1000 population per week. This minimum case detection benchmark was achieved in DKI Jakarta, DI Yogyakarta, West Sumatra and Riau for the last three weeks. Nevertheless, these provinces still have a test positivity proportion of more than 5%, which means that transmission is still very high in the community (Fig. 12).

Fig. 11. Test positivity proportion averaged over a two-week period at the national level in Indonesia, as of 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence.

Source of data

Disclaimer: Caution should be exercised when interpreting this indicator due to limitations listed in the WHO interim guidance. Other epidemiological indicators also need to be evaluated to determine the level of community transmission.
Fig. 12. Test positivity proportion and people tested per 1000 population per week at the national level and in select provinces.

Week 1: 07/06/21 to 13/06/21; Week 2: 14/06/21 to 20/06/21; Week 3: 21/06/21 to 27/06/21

- Benchmark: one person tested per 1000 population per week
- Threshold test positivity proportion: <5%

Source of data: Indonesia, DKI Jakarta, West Java, Central Java, DI Yogyakarta, East Java, Banten, West Sumatra, East Kalimantan, West Papua, Riau, Central Kalimantan, South Sumatra, Southeast Sulawesi

Note: Due to a limitation in data, other provinces could not be evaluated. For surveillance purposes, test positivity proportion is calculated as the number of confirmed cases divided by the number of people tested for diagnosis.
During the week of 21 to 27 June, DKI Jakarta had the highest weekly number of confirmed COVID-19 deaths per 100,000 population, followed by DI Yogyakarta, Riau Islands, West Kalimantan and Riau (Fig. 13).

Fig. 13. Number of confirmed COVID-19 deaths per 100,000 population per week averaged over a two-week period by province in Indonesia during 21 to 27 June 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data

Disclaimer: Based on data availability, only confirmed COVID-19 deaths have been included. As per WHO definition, however, death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case is a COVID-19-related death, unless there is a clear alternative cause of death that cannot be related to COVID-19 (e.g. trauma); there should be no period of complete recovery between the illness and death.
At the national level, during the week of 21 to 27 June, the number of confirmed COVID-19 deaths increased to 0.64 per 100 000 population, compared to 0.54 per 100 000 in the previous week. There has been a rapid increase in deaths since the beginning of June (Fig. 14).

Fig. 14. Number of confirmed COVID-19 deaths per 100 000 population per week averaged over a two-week period in Indonesia, as of 27 June 2021. Source of data

Disclaimer: Based on data availability, only confirmed COVID-19 deaths have been included. As per WHO definition, however, death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case is a COVID-19-related death, unless there is a clear alternative cause of death that cannot be related to COVID-19 (e.g. trauma); there should be no period of complete recovery between the illness and death. Evaluation of the level of community transmission could not be conducted due to data limitations.

8 Weekly mortality of COVID-19 is calculated as the number of COVID-19 deaths per 100 000 population per week averaged over a two-week period. Source of population data
• During the week of 21 to 27 June, the total number of weekly confirmed COVID-19 deaths in DKI Jakarta was 364, the highest weekly number of deaths reported in the province since the beginning of the pandemic (Fig. 15).

Fig. 15. Weekly number of confirmed COVID-19 deaths in DKI Jakarta, as of 27 June 2021. Source of data

Disclaimer: The data are provisional. There may be a discrepancy in the number of deaths in confirmed COVID-19 cases between national and provincial data sources.

• As reported on 30 June, the daily number of people tested for COVID-19 was 100 313 and the cumulative number of people tested was 13 326 172 (Fig. 16).
As of 30 June, the proportion of people recovered among the total confirmed COVID-19 cases was 86.3% and there were 239 368 active cases (Fig. 17).

Fig. 16. Daily and cumulative number of people tested for COVID-19 in Indonesia, as of 30 June 2021. Source of data

Fig. 17. Number of active cases of COVID-19 and recovery percentage in Indonesia, as of 30 June 2021. Source of data
The reported number of confirmed COVID-19 cases hospitalized in DKI Jakarta increased to 9888 hospitalized cases on 12 February. The number of hospitalized cases subsequently decreased and remained relatively stable, with an average of 3362 hospitalized cases per day in March and April. There was an increasing trend in May and June, with 18,831 hospitalized cases reported on 27 June, the highest number reported so far (Fig. 18).

![Number of confirmed COVID-19 cases hospitalized in DKI Jakarta from 1 September 2020 to 27 June 2021](source_of_data)

To monitor the quality of SARS-CoV-2 polymerase chain reaction (PCR) diagnostic testing at COVID-19 testing laboratories, Indonesia conducted two phases of External Quality Assurance (EQA), supported by the Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) and WHO between November 2020 and June 2021 (more information can be found in WHO Situation Report 34 (pages 14 to 16), Situation Report 37 (page 16), Situation Report 49 (page 16), Situation Report 53 (page 19), and Situation Report 57 (page 18)). WHO delivered a total of 650 EQA panels to the National Institute of Health Research and Development (NIHRD) on 25 June. These panels will be used for the implementation of the third phase of the EQA assessment that is planned to be conducted in August 2021.
WHO is regularly translating and sharing important health messages on its [website](https://www.who.int/indonesia) and social media platforms – [Twitter](https://twitter.com) and [Instagram](https://www.instagram.com) – and has recently published:

Infographics:
- Mucormycosis
- What medicines to take (and not take)

Poster/leaflet:
- Mucormycosis
- What medicines to take (and not take) 1
- What medicines to take (and not take) 2

On 23 and 24 June, WHO facilitated the participation of MoH and the Field Epidemiology Training Program (FETP) in the ‘Global Outbreak Alert and Response Network (GOARN) Tier 1 Training for Epidemiologists’, organized by WHO in collaboration with GOARN. Among others, the training included an overview of GOARN and GOARN response to COVID-19, international outbreak investigation and response and WHO international outbreak response.
• On 23 June, MoH participated in the International Health Regulations (IHR) Focal Points Meeting organized by WHO SEARO. The meeting discussed the 74th World Health Assembly resolutions and the decisions on the implications of IHR. In addition, the meeting discussed the strengthening of cross-border information sharing on COVID-19 to inform risk assessment and response. During the meeting, Indonesia shared its experience on COVID-19 response at points of entry.

• As of 28 June, 41 047 648 vaccine doses have been administered in the national COVID-19 vaccination campaign; 27 789 896 people have received the first dose and 13 257 752 people have received the second dose (Fig. 19).

Fig. 19. Cumulative number of vaccine doses administered in Indonesia, from 22 January to 28 June 2021. Source of data

Disclaimer: COVID-19 vaccination started on 13 January. Published data from MoH is available starting from 22 January.

• As of 28 June, the number of health workers who have received the second dose of the COVID-19 vaccine (fully vaccinated) was 1 413 333 (96.2% of the target population of 1 468 764). The number of older people who have received the first dose of the vaccine was 4 645 870 (21.6% of the targeted 21 553 118); 2 713 547 (12.6% of the targeted population) have received the second dose. The number of
essential public service workers who have received the first dose of the vaccine was 21 454 479 (123.8% of the targeted 17 327 167); 9 076 828 (52.4% of the target population) have received the second dose of the vaccine (Fig. 20). As part of the essential public service workers priority target group, 2 042 017 teachers have received the first dose of the vaccine; 1 332 782 have received the second dose.

Fig. 20. Cumulative number of people who have received COVID-19 vaccine in Indonesia, as of 28 June 2021. [Source of data]

Disclaimer: COVID-19 vaccination started with health workers on 13 January. The second stage of COVID-19 vaccination started on 17 February, targeting essential public service workers and older people (above 60 years old). Published data from MoH is available starting from 22 January. Vaccination coverage over 100% is due to differences in actual versus estimated target population.
As of 28 June, provinces with the highest number of unvaccinated (zero dose) health workers were Aceh, Papua and South Sulawesi (Fig. 21).

Fig. 21. Number of unvaccinated health workers by province in Indonesia, as of 28 June 2021.

Source of data
• As of 28 June, the highest coverage of the first dose vaccination administered to eligible target populations in the country was in Bali, followed by Riau Islands, DKI Jakarta, DI Yogyakarta and North Sulawesi. As of the same day, Bali had the highest coverage of the second dose vaccination administered, followed by DKI Jakarta, DI Yogyakarta, East Java and Riau Islands (Fig. 22).

Fig. 22. COVID-19 vaccination coverage among the eligible target populations by province in Indonesia, as of 28 June 2021. Source of data

Disclaimer: Vaccination coverage over 100% is due to differences in actual versus estimated target population.

• As of 28 June, the number of people vaccinated with two doses (fully vaccinated) per 100 population was 4.8 nationwide. As of the same day, DKI Jakarta had the highest number of people fully vaccinated (18 per 100 population) amongst all provinces, followed by Bali (16.6), DI Yogyakarta (7.4), East Kalimantan (5.9) and North Sulawesi (5.3) (Fig. 23).

Fig. 23. Number of people vaccinated with two doses (fully vaccinated) per 100 population by province in Indonesia, as of 28 June 2021. Source of data
As of 28 June, DI Yogyakarta had the highest coverage of first dose vaccination among older people, followed by DKI Jakarta, Bali and North Kalimantan. As of the same day, DKI Jakarta had the highest coverage of the second dose vaccination among older people, followed by DI Yogyakarta, Bali and North Kalimantan (Fig. 24). As of the same day, provinces with the highest number of unvaccinated older people were West Java, Central Java and East Java (which are the provinces with the highest number of older people) (Fig. 25).

Fig. 24. COVID-19 vaccination coverage among older people by province in Indonesia, as of 28 June 2021. [Source of data](http://www.who.int/indonesia)
On 25 June, WHO assisted to prepare and monitor the vaccination drive in Dharma Ibu Hospital, Ternate, North Maluku. A total of 80 essential public service workers were vaccinated in a session organized by the City Health Office, including teachers and supporting staff of schools. WHO assisted MoH in monitoring vaccination implementation to ensure alignment with the national guideline. Afterwards, a debriefing session took place with health workers to discuss findings from observation during the implementation of the vaccination service. Socialization on COVID-19 vaccines was conducted during post-vaccination observation.

Fig. 25. Number of unvaccinated older people (over 60 years of age) by province in Indonesia, as of 28 June 2021. Source of data
On 26 June, WHO supported the mass vaccination campaign in Bandung Raya, West Java. The campaign aimed at supporting the acceleration of COVID-19 vaccination amid the surge of cases. Over 200 people aged 18 years and above, including older people above 60, were vaccinated during the mass vaccination service organized by the Bandung City Resort Police.

Fig. 26. A vaccination service for essential public service workers organized by the Ternate City Health Office, North Maluku on 25 June 2021. Credit: WHO/Hermansyah

Fig. 27. A mass vaccination campaign for people aged 18 years and above (including older people), organized by the Bandung City Resort Police on 26 June. Credit: WHO/Wildan Mochamad Ridho
WHO is supporting the government for programme analysis of various essential health services to maintain their continuity during the pandemic. This includes the Yaws Eradication Programme (YEP). Yaws is a poverty-related chronic skin disease that mainly affects children below 15 years of age (with a peak between 6 and 10 years). It is caused by infection with the bacterium *Treponema pallidum* subspecies *pertenue* and is transmitted by skin contact. Yaws mainly affects the skin but can also involve the bone and cartilage. The organism that causes yaws is closely related to that which causes syphilis. Early detection and treatment can avoid chronic disfigurement and disability, which occur in about 10% of cases. Yaws occurs in overcrowded communities with limited access to basic amenities, such as safe water and sanitation, as well as health care. The analysis of the impact of the COVID-19 pandemic on YEP are presented below:

Fig. 28. Confirmed yaws case in Sumba Barat Daya District, East Nusa Tenggara. Credit: Ministry of Health

Impact of COVID-19 on YEP in Indonesia

i. There was a significant reduction in the number of confirmed yaws cases from 673 in 2019 to 130 cases in to 2020. The reported numbers in 2021 indicate a similar decrease in cases from 2019, with 66 confirmed yaws cases from January to May 2021 (Fig. 29). Postponement of active case finding, especially in school-age children due to school closure is identified as the main contributor to this situation. Children are at the highest risk of yaws infection in the community.

ii. Many activities of YEP have been postponed, especially those involving large numbers of people and mass gatherings. This includes total community treatment (TCT), total targeted treatment, intensified case finding, school surveys, serological surveys, and programme monitoring. Only 1 out of 40 endemic districts conducted TCT in 2020. This has slightly improved in the first half of 2021, with 4 out of 39
endemic districts conducting TCT between January and June 2021 (Fig. 30). Furthermore, the delays in conducting serological surveys may affect the eradication milestone and lead to expired rapid diagnostic tests (RDTs).

iii. Some government budget to support YEP, at national and provincial levels, has been diverted to the COVID-19 response since early 2020. Most yaws staff at subnational level have been repurposed to support the pandemic response. The programmes have been integrated as much as possible, especially with other skin neglected tropical diseases (NTDs) such as leprosy and lymphatic filariasis.

Fig. 29. Trend of confirmed yaws cases in Indonesia from 2015 to May 2021. Source: National Yaws Eradication Programme Indonesia, unpublished data.

Fig. 30. Impact of the COVID-19 pandemic on the implementation of total community treatment (TCT) in the Yaws Eradication Programme in 2020 and 2021 in Indonesia. Source: National Yaws Eradication Programme Indonesia, unpublished data.
To mitigate the impact of COVID-19 and maintain essential YEP services, interventions are being made in the following areas:

i. Guideline: A circular from the Director General of Disease Prevention and Control, MoH, was released in April 2020 on ‘Implementation of Prevention and Control of Leprosy and Yaws in the Context of the COVID-19 Pandemic’. This circular letter focused on the continuity of individual case management, including case diagnosis and treatment in puskesmas (community health centres). Health workers were also advised to use appropriate infection prevention and control (IPC) measures and comply with health protocols when they deliver yaws services. Meanwhile, other activities such as active case finding, rapid village surveys, serological surveys, and school surveys should be postponed until further notice. WHO shared advice about the considerations for implementing key NTD interventions in the context of the COVID-19 pandemic.

ii. Surveillance: WHO is providing technical support to the MoH to develop an electronic-based recording and reporting system for yaws and leprosy based on the District Health Information Software 2 (DHIS2).

iii. Diagnosis: WHO provided support to introduce new point-of-care diagnostic tests for detecting active yaws cases. This includes the provision of test kits, technical support to finalize the testing protocol and financial support. The new test kits can be used as a confirmatory test and reduce the cost for standard rapid plasma reagin (RPR) assay. The availability of more sensitive test kits is essential for YEP, especially in settings on the verge of eradication where the disease can be rare at the community level.

iv. WHO is continuing to provide overall technical support to the MoH for YEP, as well as communicating regularly with donors and implementing partners.
The overall funding request for WHO operations and technical assistance is US$ 46 million (US$ 27 million for response and US$ 19 million for recovery phase), based on estimated needs as of June 2021 (Fig. 31).

Data presented in this situation report have been taken from publicly available data from the MoH (https://infeksiemerging.kemkes.go.id/), COVID-19 Mitigation and National Economic Recovery Team (KPCPEN) (http://covid19.go.id) and provincial websites. There may be differences in national and provincial data depending on the source used. All data are provisional and subject to change.
Table 1. Weekly risk assessment by province in Indonesia, as of 27 June 2021.

<table>
<thead>
<tr>
<th>Province</th>
<th>Case incidence trend</th>
<th>New cases in last 7 days</th>
<th>Change in new cases in last 7 days (%)</th>
<th>New deaths in last 7 days</th>
<th>Change in new deaths in last 7 days (%)</th>
<th>Testing rate (per 1000 population per week)</th>
<th>Weekly test positivity proportion in last 7 days (%)</th>
<th>2nd dose vaccination among target population (%)</th>
<th>2nd dose vaccination among older population (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh</td>
<td>Decrease</td>
<td>582</td>
<td>-39%</td>
<td>50</td>
<td>28%</td>
<td>0.29</td>
<td>17%</td>
<td>12.5</td>
<td>0.6</td>
</tr>
<tr>
<td>North Sumatera</td>
<td>Increase</td>
<td>1438</td>
<td>47%</td>
<td>35</td>
<td>19%</td>
<td>0.73</td>
<td>13%</td>
<td>22.7</td>
<td>6.9</td>
</tr>
<tr>
<td>West Sumatera</td>
<td>Decrease</td>
<td>1509</td>
<td>29%</td>
<td>38</td>
<td>12%</td>
<td>1.70</td>
<td>16%</td>
<td>16.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Riau</td>
<td>Decrease</td>
<td>1859</td>
<td>-9%</td>
<td>62</td>
<td>-14%</td>
<td>1.26</td>
<td>21%</td>
<td>31.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Jambi</td>
<td>Increase</td>
<td>674</td>
<td>-25%</td>
<td>21</td>
<td>-9%</td>
<td>0.87</td>
<td>21%</td>
<td>23.9</td>
<td>6.3</td>
</tr>
<tr>
<td>South Sumatera</td>
<td>Decrease</td>
<td>1058</td>
<td>18%</td>
<td>47</td>
<td>12%</td>
<td>0.38</td>
<td>32%</td>
<td>26.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>Increase</td>
<td>715</td>
<td>96%</td>
<td>13</td>
<td>44%</td>
<td>0.44</td>
<td>80%</td>
<td>18.7</td>
<td>7.2</td>
</tr>
<tr>
<td>Lampung</td>
<td>Increase</td>
<td>990</td>
<td>34%</td>
<td>33</td>
<td>-62%</td>
<td>0.38</td>
<td>31%</td>
<td>17.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Bangka Belitung</td>
<td>Decrease</td>
<td>637</td>
<td>26%</td>
<td>10</td>
<td>-33%</td>
<td>2.13</td>
<td>20%</td>
<td>39.2</td>
<td>20.9</td>
</tr>
<tr>
<td>Riau Islands</td>
<td>Increase</td>
<td>2394</td>
<td>23%</td>
<td>63</td>
<td>80%</td>
<td>2.43</td>
<td>44%</td>
<td>41.0</td>
<td>11.6</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>Increase</td>
<td>46032</td>
<td>77%</td>
<td>401</td>
<td>19%</td>
<td>12.80</td>
<td>34%</td>
<td>62.8</td>
<td>58.7</td>
</tr>
<tr>
<td>West Java</td>
<td>Increase</td>
<td>23735</td>
<td>52%</td>
<td>468</td>
<td>15%</td>
<td>1.22</td>
<td>39%</td>
<td>27.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Central Java</td>
<td>Increase</td>
<td>19381</td>
<td>69%</td>
<td>456</td>
<td>14%</td>
<td>0.96</td>
<td>58%</td>
<td>30.3</td>
<td>20.6</td>
</tr>
<tr>
<td>DI Yogyakarta</td>
<td>Increase</td>
<td>5217</td>
<td>34%</td>
<td>112</td>
<td>22%</td>
<td>5.15</td>
<td>26%</td>
<td>58.6</td>
<td>42.0</td>
</tr>
<tr>
<td>East Java</td>
<td>Increase</td>
<td>6136</td>
<td>37%</td>
<td>359</td>
<td>20%</td>
<td>0.86</td>
<td>18%</td>
<td>41.0</td>
<td>14.6</td>
</tr>
<tr>
<td>Banten</td>
<td>Increase</td>
<td>2946</td>
<td>100%</td>
<td>52</td>
<td>108%</td>
<td>0.68</td>
<td>33%</td>
<td>26.0</td>
<td>8.1</td>
</tr>
<tr>
<td>Bali</td>
<td>Increase</td>
<td>1201</td>
<td>103%</td>
<td>19</td>
<td>58%</td>
<td>0.28</td>
<td>97%</td>
<td>103.2</td>
<td>32.6</td>
</tr>
<tr>
<td>West Nusa Tenggara</td>
<td>Decrease</td>
<td>100</td>
<td>-32%</td>
<td>13</td>
<td>55%</td>
<td>0.11</td>
<td>17%</td>
<td>23.1</td>
<td>7.6</td>
</tr>
<tr>
<td>East Nusa Tenggara</td>
<td>Decrease</td>
<td>671</td>
<td>236%</td>
<td>8</td>
<td>100%</td>
<td>0.41</td>
<td>30%</td>
<td>18.8</td>
<td>3.5</td>
</tr>
<tr>
<td>West Kalimantan</td>
<td>Increase</td>
<td>988</td>
<td>22%</td>
<td>105</td>
<td>16%</td>
<td>0.87</td>
<td>22%</td>
<td>19.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Central Kalimantan</td>
<td>Stable</td>
<td>936</td>
<td>55%</td>
<td>14</td>
<td>18%</td>
<td>0.70</td>
<td>48%</td>
<td>32.8</td>
<td>9.5</td>
</tr>
<tr>
<td>South Kalimantan</td>
<td>Decrease</td>
<td>326</td>
<td>16%</td>
<td>12</td>
<td>50%</td>
<td>0.02</td>
<td>12%</td>
<td>26.0</td>
<td>3.6</td>
</tr>
<tr>
<td>East Kalimantan</td>
<td>Increase</td>
<td>2220</td>
<td>33%</td>
<td>32</td>
<td>33%</td>
<td>1.38</td>
<td>43%</td>
<td>36.1</td>
<td>12.3</td>
</tr>
<tr>
<td>North Kalimantan</td>
<td>Increase</td>
<td>160</td>
<td>-51%</td>
<td>2</td>
<td>0%</td>
<td>1.33</td>
<td>16%</td>
<td>32.2</td>
<td>30.1</td>
</tr>
<tr>
<td>North Sulawesi</td>
<td>Increase</td>
<td>189</td>
<td>40%</td>
<td>3</td>
<td>50%</td>
<td>0.51</td>
<td>15%</td>
<td>33.5</td>
<td>6.7</td>
</tr>
<tr>
<td>Central Sulawesi</td>
<td>Increase</td>
<td>234</td>
<td>70%</td>
<td>11</td>
<td>26%</td>
<td>0.28</td>
<td>27%</td>
<td>18.3</td>
<td>3.1</td>
</tr>
<tr>
<td>South Sulawesi</td>
<td>Increase</td>
<td>765</td>
<td>13%</td>
<td>13</td>
<td>11%</td>
<td>0.35</td>
<td>24%</td>
<td>28.2</td>
<td>4.3</td>
</tr>
<tr>
<td>Southeast Sulawesi</td>
<td>Increase</td>
<td>515</td>
<td>302%</td>
<td>6</td>
<td>50%</td>
<td>0.31</td>
<td>61%</td>
<td>18.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Gorontalo</td>
<td>Increase</td>
<td>195</td>
<td>191%</td>
<td>1</td>
<td>-50%</td>
<td>0.37</td>
<td>43%</td>
<td>33.2</td>
<td>3.8</td>
</tr>
<tr>
<td>West Sulawesi</td>
<td>Increase</td>
<td>104</td>
<td>112%</td>
<td>0</td>
<td>0%</td>
<td>0.27</td>
<td>27%</td>
<td>28.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Maluku</td>
<td>Increase</td>
<td>290</td>
<td>72%</td>
<td>6</td>
<td>-14%</td>
<td>0.47</td>
<td>34%</td>
<td>18.8</td>
<td>8.0</td>
</tr>
<tr>
<td>North Maluku</td>
<td>Increase</td>
<td>356</td>
<td>27%</td>
<td>5</td>
<td>150%</td>
<td>1.01</td>
<td>27%</td>
<td>15.4</td>
<td>2.8</td>
</tr>
<tr>
<td>West Papua</td>
<td>Increase</td>
<td>625</td>
<td>171%</td>
<td>6</td>
<td>100%</td>
<td>2.78</td>
<td>23%</td>
<td>26.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Papua</td>
<td>Increase</td>
<td>217</td>
<td>210%</td>
<td>0</td>
<td>-100%</td>
<td>0.43</td>
<td>15%</td>
<td>20.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Source of data: Cases, deaths and testing; vaccination

Note: Case incidence considers the trend of cases over the last three weeks. The change in new cases in the last seven days is marked as light red if there is an increase of 50% compared to the previous week. The change in new deaths is marked as light red if there is any increase in the percentage of deaths (and number of deaths ≥ 10) compared to the previous week. The testing rate is marked as yellow if it is less than 1/1000 population. Test positivity proportion is marked as light red if ≥ 20% and yellow if between 5% and 20%. The second dose vaccination is marked as light red if < 5% and yellow if between 5% and 10%. Target population for vaccination includes health workers, essential public service workers and older persons.

- Urgent action is needed throughout Indonesia related to the surge of cases, notably in provinces highlighted in light red, that is DKI Jakarta, West Java, Central Java, DI Yogyakarta, East Java and Banten, and in yellow, especially Riau Islands.
Bed occupancy rate has also been reported to be high in all of these provinces and is considered in the risk assessment.9,10,11,12

- Implementation of PHSM throughout the country, even as vaccines are being introduced, is crucial. PHSM works even in the context of variants of concern (VOCs) as demonstrated in India (see Situation Report 60: Lessons Learned) and other countries that are facing a surge of cases. When there are signs of a surge of cases, and considering that some VOCs have much higher transmissibility, timely adjustments of PHSM is very important, including the use of stringent measures (such as movement restrictions) as quickly as possible.13

- Inadequate testing rate in most provinces is a continuous concern. Almost 75% of provinces reported a testing rate below the recommended benchmark of 1 test per 1000 population per week in the last week. Without appropriate testing in sufficient numbers, many provinces are unable to isolate confirmed cases on time and are unable to meet surveillance standards or conduct timely contact tracing and quarantine of contacts.

- Strengthening genomic surveillance and investigating clusters when variant involvement is suspected/confirmed are also highly important.

- There is a need for hospitals to be equipped for the surge in cases that has been observed in the country, including ensuring the availability of isolation rooms, oxygen supplies, medical equipment, personal protective equipment (PPE), mobile field hospitals, body bags, additional human resources, and capacity to convert hospital rooms to isolation or ICU rooms.14

- Community engagement and support (strict implementation of personal protective measures) are essential and should be adapted to the current surge in cases; this will help immensely to bring the pandemic under control.

- Vaccination needs to be expedited, especially for older and vulnerable populations and people with comorbidities.

Table 2. Title and details of recent WHO resource materials

Source: https://www.who.int/

<table>
<thead>
<tr>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO Weekly Epidemiological Update on COVID-19, 29 June 2021</td>
<td>The WHO Weekly Epidemiological Update provides an overview of the global, regional and country-level COVID-19 cases and deaths, highlighting key data and trends as well as other pertinent epidemiological information concerning the COVID-19 pandemic. This 46th edition includes data as received by WHO from national authorities as of 29 June 2021.</td>
</tr>
<tr>
<td>Considerations for quarantine of contacts of COVID-19 cases, 25 June 2021</td>
<td>The purpose of this document is to offer guidance to Member States on quarantine measures for individuals in the context of COVID-19. It is intended for those responsible for establishing local or national policy for quarantine of individuals, and adherence to infection prevention and control measures.</td>
</tr>
<tr>
<td>Recommendations for national SARS-CoV-2 testing strategies and diagnostic capacities, 25 June 2021</td>
<td>Timely and accurate diagnostic testing is an essential tool in preventing and controlling the spread of COVID-19. This document describes recommendations for national testing strategies and the use of PCR and rapid antigen tests in different transmission scenarios of the COVID-19 outbreak, including how testing might be rationalized in low resource settings.</td>
</tr>
<tr>
<td>Indicator framework for the evaluation of the public health effectiveness of digital proximity tracing solutions, 25 June 2021</td>
<td>Digital proximity tracing (DPT) is a new technology that has been increasingly adopted by countries to support conventional contact tracing efforts in combating the COVID-19 pandemic. This indicator framework is designed to support the evolution of the public health effectiveness of DPT. It is intended for use by relevant national public health authorities and related institutions involved in the planning, implementation, monitoring and evaluation of contact tracing activities.</td>
</tr>
</tbody>
</table>
Online WHO COVID-19 courses:
- COVID-19 vaccination training for health workers
- Standard precautions: Environmental cleaning and disinfection
- Management of COVID-19 in long-term care facilities
- Operational planning guidelines and COVID-19
- Clinical management of severe acute respiratory infections
- Health and safety briefing for respiratory diseases – eProtect

WHO guidance:
- A family toolbox for managing health and happiness during COVID-19 (Part 1)
- Managing family risk: A facilitator’s toolbox for empowering families to manage risks during COVID-19 (Part 2)
- Hypertension and COVID-19

Infographics:
- Contact tracing: Confirmed contact & COVID-19 positive
- Vaccination - Adults aged 60 and older
- COVID-19 Risk Management: Medical
- COVID-19 Risk Management: Preparing for sickness
- COVID-19 Risk Management: Shopping
- COVID-19 Risk Management: If someone gets sick
- COVID-19 Risk Management: Visiting care facility

Questions and answers:
- COVID-19: Vaccines
- COVID-19: Vaccine research and development
- COVID-19: Vaccine access and allocation

Videos:
- Science in 5: Evolution of the SARS-CoV-2 virus
- Time to abide (1-10)
- COVID-19 virus variants

For more information please feel free to contact: seinocomm@who.int
WHO Indonesia Reports