As of 21 July, the Government of Indonesia reported 2,983,830 (33,772 new) confirmed cases of COVID-19, 77,583 (1,383 new) deaths and 2,356,553 recovered cases from 510 districts across all 34 provinces.¹

During the week of 12 to 18 July, 32 out of 34 provinces reported an increase in the number of cases while 17 of them experienced a worrying increase of 50% or more; 21 provinces (8 new provinces added since the previous week) have now reported the Delta variant; and the test positivity proportion is over 20% in 33 out of 34 provinces despite their efforts in improving the testing rates. Indonesia is currently facing a very high transmission level, and it is indicative of the utmost importance of implementing stringent public health and social measures (PHSM), especially movement restrictions, throughout the country.

Fig. 1. Geographic distribution of cumulative number of confirmed COVID-19 cases in Indonesia across the provinces reported from 15 to 21 July 2021. [Source of data](https://covid19.go.id/peta-sebaran-covid19)

Disclaimer: The number of cases reported daily is not equivalent to the number of persons who contracted COVID-19 on that day; reporting of laboratory-confirmed results may take up to one week from the time of testing.

• On 19 July, the Government of Indonesia reported 1338 new COVID-19 deaths nationwide; a record high since the beginning of the pandemic in the country. The National COVID-19 Task Force informed on the same day that the highest daily count of deaths was reported in East Java (359), followed by Central Java (278) and DKI Jakarta (250).²

• The Head of the Federation of Indonesian Labour Unions (Federasi Serikat Buruh Persatuan Indonesia (FSBPI)) reported on 19 July that thousands of day workers in textile, garment, shoe and leather industries across Indonesia have contracted COVID-19 within a span of two weeks. This alarming number was mainly due to workers reporting to work even when they developed mild symptoms. Their main concern was the loss of daily wage as a result of self-isolation or quarantine. Urgent attention is needed to control COVID-19 transmission in these industries.³

• On 18 July, the Deputy Head of the Indonesian Medical Association (Ikatan Dokter Indonesia (IDI)) reported that hospitals in Java and Bali continued to struggle with the surge of COVID-19 patients. IDI requested the government to extend the implementation of the emergency restrictions on public activities (Pemberlakuan Pembatasan Kegiatan Masyarakat (PPKM) Darurat) to curb the transmission and reduce the burden to the health system. In addition, IDI highlighted that implementation of emergency PPKM also needs to be expanded to other provinces experiencing the similar upward trend of COVID-19 cases⁴. IDI also reported that a total of 114 doctors have died due to COVID-19 between 1 and 17 July. With the continued increase in cases, IDI noted that the Indonesian health system may soon collapse if stringent measures are not urgently implemented.⁵

- On 21 July, 33 772 new and 2 983 830 cumulative cases were reported nationwide (Fig. 2). From 15 to 21 July, the average number of new cases per day was 44 826 cases. This was approximately 36% higher than the previous week (41 521 cases per day).

Disclaimer: Since 10 February 2021, confirmed cases include those who tested positive using nucleic acid amplification test (NAAT) (e.g. polymerase chain reaction (PCR)) or antigen-detecting rapid diagnostic test (Ag-RDT). The number of cases reported daily is not equivalent to the number of persons who contracted COVID-19 on that day and might be influenced by the number of people tested on that day (see Fig. 17); reporting of laboratory-confirmed results may take up to one week from the time of testing. Therefore, caution must be taken in interpreting this figure and the epidemiological curve for further analysis, either at the national or subnational level.
During the week of 12 to 18 July, 32 out of 34 provinces experienced an increase in the number of cases compared to the previous week, and 17 of those provinces experienced an increase of 50% or more. Of which, six provinces experienced an increase of more than 150%: Banten (540%), North Sumatra (238%), Papua (233%), South Kalimantan (196%), East Java (187%) and Jambi (152%) (Fig. 3). This suggests an urgent need for stringent public health and social measures (PHSM), especially movement restrictions, to be implemented throughout the country.

Fig. 3. Percentage change of weekly number of confirmed cases by province during 12 to 18 July 2021 compared to the previous week. [Source of data](who.int/indonesia)

Disclaimer: The number of weekly confirmed cases is calculated taking into consideration the daily number of reported cases. It is important to conduct further investigation if there is a substantial change in new cases, especially in provinces with a change of 50% or more. Other factors, such as testing and contact tracing, may help elucidate the reasons behind substantial changes. Additional indicators, including case incidence and mortality, should be considered to guide adjustment of PHSM.
During the week of 12 to 18 July, the incidence\(^6\) of COVID-19 cases in Indonesia increased substantially from 67.1 per 100,000 population in the previous week to 95.6 per 100,000 population (Fig. 4). The incidence has been rapidly increasing in the country since mid-May and is more than three-fold greater than the previously recorded highest incidence in February (31.5 per 100,000 population).

\(^6\) Weekly incidence of COVID-19 is calculated as the number of new cases per 100,000 population per week averaged over a two-week period.

Disclaimer: There are seven categories for transmission classification: (1) no (active) cases; (2) imported/sporadic cases; (3) cluster of cases; (4) community transmission 1 (CT1); (5) community transmission 2 (CT2); (6) community transmission 3 (CT3); and (7) community transmission 4 (CT4).

Caution should be exercised when interpreting this indicator due to limitations listed in the **WHO interim guidance**. Other epidemiological indicators also need to be evaluated to decide on the level of community transmission. This disclaimer applies to indicators at national (Fig. 4) and subnational levels (Figs. 5 to 11).
During the week of 12 to 18 July, six provinces, as opposed to two provinces in the previous week, were at the highest level of community transmission (CT4). The incidence of COVID-19 cases per 100 000 population was 753.9 in DKI Jakarta, 305.1 in DI Yogyakarta, 196.8 in West Papua, 182.0 in East Kalimantan, 174.7 in Riau Islands and 152.9 in North Kalimantan (Fig. 5). Based on the WHO interim guidance, this means there is a very high risk of COVID-19 infection for the general public and a very high number of locally acquired, widely dispersed cases detected in the past 14 days.

![Incidence of COVID-19 per 100 000 population per week averaged over a two-week period by province in Indonesia during 12 to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data](image)

Source of data
In Java and Bali, the weekly incidence of COVID-19 increased in all provinces during the week of 12 to 18 July compared to the previous week (Fig. 6). Java has been experiencing a steep increase in incidence rates since June. Both DKI Jakarta and DI Yogyakarta have been at the highest community transmission scenario (CT4) in the last five weeks and two weeks, respectively.

Fig. 6. Incidence of COVID-19 per 100,000 population per week averaged over a two-week period in Java - Bali, from 13 April 2020 to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. **Source of data**
In Sumatra, the weekly incidence of COVID-19 increased in all provinces during the week of 12 to 18 July compared to the previous week. There has been an increasing trend in incidence since April in most provinces. Riau Islands has experienced a consistent and substantial increase in weekly incidence since March; reaching the highest transmission scenario (CT4). There has also been a recent surge in weekly incidence in West Sumatra, South Sumatra, Bengkulu, Lampung and Bangka Belitung Islands (Fig. 7).

![Incidence of COVID-19 per 100 000 population per week averaged over a two-week period in Sumatra, from 13 April 2020 to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence.](image)

Source of data

WHO Indonesia Situation Report - 63
who.int/indonesia
• In Kalimantan, the weekly incidence of COVID-19 increased in all provinces during the week of 12 to 18 July compared to the previous week, with a rapid increase in cases since the end of June (Fig. 8). In particular, East Kalimantan and North Kalimantan experienced a substantial increase in cases and had reached the highest transmission scenario (CT4).

Fig. 8. Incidence of COVID-19 per 100,000 population per week averaged over a two-week period in Kalimantan, from 13 April 2020 to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
In Sulawesi, the weekly incidence of COVID-19 cases increased in all provinces during the period of 12 to 18 July, compared to the previous week. The incidence has been consistently increasing in all provinces since the end of May (Fig. 9).

Fig. 9. Incidence of COVID-19 per 100,000 population per week averaged over a two-week period in Sulawesi, from 13 April 2020 to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence.

Source of data
During the week of 12 to 18 July, the weekly incidence of COVID-19 increased sharply in West Nusa Tenggara, East Nusa Tenggara, Maluku, North Maluku, Papua and West Papua compared to the previous week (Fig. 10). West Papua had reached the highest transmission scenario (CT4).

Fig. 10. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period in West Nusa Tenggara, East Nusa Tenggara, Maluku, North Maluku, Papua, and West Papua, from 13 April 2020 to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
- Nationwide test positivity proportion increased sharply in December 2020; and reached the first peak of 30.5% in mid-February 2021. It slowly declined thereafter and remained between 9% and 20% between mid-March and end of June (corresponding to CT3 – high incidence). Since then, however, the positivity proportion has increased rapidly and steadily, reaching and remaining at the level CT4 (very high incidence) to date. As of 18 July, the positivity proportion was 28.7% (Fig. 11).

Fig. 11. Test positivity proportion averaged over a two-week period at the national level in Indonesia, as of 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence.

Source of data

Disclaimer: Caution should be exercised when interpreting this indicator due to limitations listed in the [WHO interim guidance](https://www.who.int/). Other epidemiological indicators also need to be evaluated to determine the level of community transmission.

- The percentage of positive samples can be interpreted reliably only with comprehensive surveillance and testing in the order of one person tested per 1000 population per week. This minimum case detection benchmark was achieved in DKI Jakarta, West Java, Central Java, DI Yogyakarta, Banten, West Sumatra, East Kalimantan, West Papua, Riau and Central Kalimantan for the last three weeks. Nevertheless, these provinces still have a test positivity proportion of more than 5%, which means that transmission is still very high in the community (Fig. 12).
Fig. 12. Test positivity proportion and people tested per 1000 population per week at the national level and in select provinces.

Week 1: 28/06/21 to 04/06/21; Week 2: 05/07/21 to 11/07/21; Week 3: 12/07/21 to 18/07/21

Benchmark: one person tested per 1000 population per week

Threshold test positivity proportion: <5%

Source of data: Indonesia, DKI Jakarta, West Java, Central Java, DI Yogyakarta, East Java, Banten, West Sumatra, East Kalimantan, West Papua, Riau, Central Kalimantan, South Sumatra, Southeast Sulawesi

Note: Due to a limitation in data, other provinces could not be evaluated. For surveillance purposes, test positivity proportion is calculated as the number of confirmed cases divided by the number of people tested for diagnosis.
During the week of 12 to 18 July, DI Yogyakarta had the highest weekly number of confirmed COVID-19 deaths per 100 000 population, followed by DKI Jakarta, East Kalimantan, Riau Islands and Central Java (Fig. 13).

Fig. 13. Number of confirmed COVID-19 deaths per 100 000 population per week averaged over a two-week period by province in Indonesia during 28 June to 18 July 2021, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. **Source of data**

Disclaimer: Based on data availability, only confirmed COVID-19 deaths have been included. As per WHO definition, however, death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case is a COVID-19-related death, unless there is a clear alternative cause of death that cannot be related to COVID-19 (e.g. trauma); there should be no period of complete recovery between the illness and death. Evaluation of excess mortality is also beneficial to complement information on COVID-19 death.
At the national level, during the week of 12 to 18 July, the number of confirmed COVID-19 deaths increased from 1.43 deaths per 100 000 in the previous week to 2.09 per 100 000 population\(^7\). There was a steep increase in deaths throughout June, which has continued into July (Fig. 14).

\(^7\) Weekly mortality of COVID-19 is calculated as the number of COVID-19 deaths per 100 000 population per week averaged over a two-week period. Source of population data [Source of data](http://www.who.int/indonesia).

Disclaimer: Based on data availability, only confirmed COVID-19 deaths have been included. As per WHO definition, however, death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case is a COVID-19-related death, unless there is a clear alternative cause of death that cannot be related to COVID-19 (e.g. trauma); there should be no period of complete recovery between the illness and death. Evaluation of the level of community transmission could not be conducted due to data limitations.
During the week of 12 to 18 July, the total number of weekly confirmed COVID-19 deaths in DKI Jakarta was 708, a slight decrease from the previous week (Fig. 15).

The Ministry of Health (MoH) has organized a virtual meeting on monitoring and evaluation of the emergency PPKM, from 11 to 18 July 2021. The meeting was attended by surveillance officers from provinces and districts where emergency PPKM is implemented, according to the Instruction of the Minister of Home Affairs Number 15 of 2021 on ‘COVID-19 Emergency PPKM in Java and Bali’. The meeting concluded that testing rates in all provinces and districts implementing emergency PPKM had reached the government’s benchmark. The meeting highlighted suboptimal monitoring of self-isolation and limited compliance to quarantine regulations among close contacts, which may have attributed to difficulties in containing the COVID-19 transmission. WHO continues to support MoH through technical assistance including data visualization and analysis to strengthen the monitoring of implementation of emergency PPKM.

CONTACT TRACING

The Ministry of Health (MoH) has organized a virtual meeting on monitoring and evaluation of the emergency PPKM, from 11 to 18 July 2021. The meeting was attended by surveillance officers from provinces and districts where emergency PPKM is implemented, according to the Instruction of the Minister of Home Affairs Number 15 of 2021 on ‘COVID-19 Emergency PPKM in Java and Bali’. The meeting concluded that testing rates in all provinces and districts implementing emergency PPKM had reached the government’s benchmark. The meeting highlighted suboptimal monitoring of self-isolation and limited compliance to quarantine regulations among close contacts, which may have attributed to difficulties in containing the COVID-19 transmission. WHO continues to support MoH through technical assistance including data visualization and analysis to strengthen the monitoring of implementation of emergency PPKM.
As of 21 July, the daily number of people tested for COVID-19 was 116 232 and the cumulative number of people tested was 16 152 354 (Fig. 16).

[Graph showing daily and cumulative number of people tested for COVID-19 in Indonesia, as of 21 July 2021. Source of data]

As of 21 July, the proportion of people recovered among the total confirmed cases was 79.0% and there were 549 694 active cases (Fig. 17). The recovery percentage has been decreasing since the end of June.
WHO Indonesia Situation Report - 63

Fig. 17. Number of active cases of COVID-19 and recovery percentage in Indonesia, as of 21 July 2021. Source of data

- The reported number of confirmed cases hospitalized in DKI Jakarta increased sharply in June and the beginning of July, reaching to the highest recorded number of hospitalizations, 30,418, on 7 July. It has since decreased slightly to 22,271 hospitalizations on 18 July. The previous high was 9,888 hospitalized cases reported on 12 February (Fig. 18).

Fig. 18. Number of confirmed COVID-19 cases hospitalized in DKI Jakarta from 1 September 2020 to 18 July 2021. Source of data
WHO has recently published posters for health workers and other personnel to adhere to safety and mitigation measures in handling medical oxygen. They include guidance on medical oxygen cylinder safety, medical gas piping systems safety and medical oxygen fire risk mitigation measures.

WHO continues to translate key courses designed for partners and frontline responders into Indonesian, which are available on the OpenWHO platform. As of 20 July, 31 055 participants took part in eight OpenWHO courses available in Indonesian.
Table 1. Number of participants enrolled in the OpenWHO courses that have been translated into Indonesian, as of 20 July 2021

<table>
<thead>
<tr>
<th>No.</th>
<th>OpenWHO courses</th>
<th>Number of participants enrolled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Infection Prevention and Control (IPC) for COVID-19 virus</td>
<td>8427</td>
</tr>
<tr>
<td>2.</td>
<td>ePROTECT Respiratory Infections</td>
<td>6720</td>
</tr>
<tr>
<td>3.</td>
<td>COVID-19 vaccination training for health workers</td>
<td>4654</td>
</tr>
<tr>
<td>5.</td>
<td>Introduction to COVID-19: methods for detection, prevention, response and control</td>
<td>3534</td>
</tr>
<tr>
<td>6.</td>
<td>WHO Clinical Care Severe Acute Respiratory Infection Training</td>
<td>1330</td>
</tr>
<tr>
<td>7.</td>
<td>Severe Acute Respiratory Infection (SARI) Treatment Facility Design</td>
<td>1288</td>
</tr>
<tr>
<td>8.</td>
<td>Long-term care facilities in the context of COVID-19</td>
<td>1259</td>
</tr>
</tbody>
</table>

- WHO is regularly translating and sharing important health messages on its [website](http://who.int) and social media platforms - [Twitter](http://twitter.com) and [Instagram](http://instagram.com) – and has recently published:

 Infographics:
 - [Managing COVID-19 at home: Checking blood oxygen levels](http://example.com)
 - [5 Steps for managing patients with COVID-19 at home: Tips for health care providers](http://example.com)
 - [5 Steps for managing patients with COVID-19 at home: for the public](http://example.com)
As of 19 July, 58 758 193 vaccine doses have been administered in the national COVID-19 vaccination campaign; 42 313 731 people have received the first dose and 16 444 462 people have received the second dose (Fig. 21).

Fig. 20. WHO infographics on 5 Steps for managing patients with COVID-19 at home: for the public, July 2021.
As of 19 July, the number of older people who have received the first dose of the COVID-19 vaccine was 4 704 081 (21.8% of the targeted 21 553 118); only 2 965 880 (13.8% of the targeted population of older people) have received the second dose (fully vaccinated). The number of essential public service workers who have received the second dose of the vaccine was 9 801 630 (56.6% of the target population of 17 327 167). Among them, 2 186 395 teachers (38.6% of the targeted 5 659 560) have received the first dose and 1 631 045 (28.8% of targeted population) have received the second dose. The number of people from vulnerable and high-risk groups and those aged 18 years and older who have received the first dose of the vaccine was 11 607 051 (8.2% of the targeted 141 211 181); 2 237 687 (1.6% of the targeted population) have received the second dose. The number of health workers who have received the second dose of the vaccine was 1 439 234 (98% of the target population of 1 468 764) (Fig. 22).

Fig. 21. Cumulative number of vaccine doses administered in Indonesia, from 22 January to 19 July 2021. Source of data

Disclaimer: COVID-19 vaccination started on 13 January. Published data from MoH is available starting from 22 January.
As of 19 July, provinces with the highest percentage of unvaccinated (zero dose) health workers were Papua, Maluku and Central Sulawesi (Fig. 23).

Disclaimer: COVID-19 vaccination started with health workers on 13 January. The second stage of COVID-19 vaccination started on 17 February, targeting essential public service workers and older people (above 60 years old). Published data from MoH is available starting from 22 January. Vaccination coverage over 100% is due to differences in actual versus estimated target population.
As of 19 July, Bali was the province with the highest first-dose vaccination coverage among all eligible target populations (health workers, older people, essential public service workers, vulnerable and high-risk populations, children aged 12-17 years and people aged 18 and above), followed by DKI Jakarta, Riau Islands, North Sulawesi and DI Yogyakarta. As of the same day, DKI Jakarta had the highest second-dose vaccination coverage among the same target groups, followed by Bali, DI Yogyakarta, Riau Islands and Central Kalimantan (Fig. 24).
As of 19 July, the number of people who received two doses of the vaccine (fully vaccinated) per 100 population was 6.0 nationwide; and DKI Jakarta had the highest number of people fully vaccinated (18.3 per 100 population) amongst all provinces, followed by Bali (17.5), Central Kalimantan (7.7), Riau Islands (7.6) and DI Yogyakarta (7.6) (Fig. 25).

Disclaimer: Vaccination coverage has been adjusted according to the updated denominator published by the Ministry of Health. Published data from MoH includes target populations of the third stage of national vaccination campaign, which was available starting from 13 July 2021.

- As of 19 July, the number of people who received two doses of the vaccine (fully vaccinated) per 100 population was 6.0 nationwide; and DKI Jakarta had the highest number of people fully vaccinated (18.3 per 100 population) amongst all provinces, followed by Bali (17.5), Central Kalimantan (7.7), Riau Islands (7.6) and DI Yogyakarta (7.6) (Fig. 25).
As of 19 July, DKI Jakarta had the highest first-dose vaccination coverage among older people, followed by Bali, DI Yogyakarta and Riau Islands. As of the same day, DKI Jakarta had the highest second-dose vaccination coverage among this target group, followed by DI Yogyakarta, Bali and Riau Islands (Fig. 26). As of the same day, provinces with the highest percentage of unvaccinated older people were Aceh, West Sumatra and North Maluku (Fig. 27).

Fig. 26. COVID-19 vaccination coverage among older people by province in Indonesia, as of 19 July 2021. *Source of data*

Fig. 25. Number of people vaccinated with two COVID-19 vaccine doses (fully vaccinated) per 100 population by province in Indonesia, as of 19 July 2021. *Source of data*

Disclaimer: Vaccination coverage for older people has been adjusted according to the published data available starting from 13 July 2021.
As of 19 July, DKI Jakarta had the highest first-dose vaccination coverage among vulnerable and high-risk populations and the general population (above 18 years of age), followed by Bali, Riau Islands and North Sulawesi. As of the same day, Bali had the highest second-dose vaccination coverage among this target group, followed by Riau Islands, Riau and DKI Jakarta (Fig. 28).

Fig. 27. Percentage of unvaccinated older people (over 60 years of age) by province in Indonesia, as of 19 July 2021. Source of data
As of 19 July, DKI Jakarta had the highest first-dose vaccination coverage among children (aged 12 to 17 years), followed by Bali, Riau Islands and DI Yogyakarta (Fig. 29).

Disclaimer: Indonesia kicked-off the third stage of the national COVID-19 vaccination campaign targeting vulnerable and high-risk populations and general population (above 18 years of age) in 5 May 2021. Published data from MoH is available starting from 13 July 2021.

- As of 19 July, DKI Jakarta had the highest first-dose vaccination coverage among children (aged 12 to 17 years), followed by Bali, Riau Islands and DI Yogyakarta (Fig. 29).

Disclaimer: COVID-19 vaccination targeting children started on 1 July 2021. Published data from MoH is available from 13 July 2021.
WHO is supporting the government with the analysis of various essential health services to ensure their continuity during the pandemic. Highlights of previous National AIDS Programme (NAP) analyses can be found in WHO Situation Report 16 (pages 16-20) and Situation Report 36 (pages 17-21). Updates from the programme are presented below:

i. WHO continues to support the NAP to ensure the continuity of essential HIV services during the COVID-19 pandemic. Trainings on HIV and sexually transmitted diseases (STIs) services were conducted for health workers from 1600 community health centres (puskesmas) in 2020. One of the interesting findings was a significant nationwide increase in HIV testing in Q1 (January-March) 2021, which was approximately 70% higher than Q1 2020 (Fig. 30).

ii. The number of people living with HIV (PLHIV) who received care in January-February 2021 decreased by an average of 32% compared to the same period in 2020. A significant decrease of 44% was observed in March 2021, compared to the same period in 2020 (Fig. 31). These figures were consistent with the substantial decrease in the number of facilities providing antiretroviral therapy (ART), from 8000 facilities in 2020 to 1600 facilities in 2021. The low number of PHLV receiving treatment in 2021 can also be explained by the lack of clinicians’ confidence in prescribing new ART regimen composed of tenofovir/lamivudine/dolutegravir (TLD).
iii. There was a 3% decrease in the number of viral load tests performed in Q1 2021, compared to the same period in 2020 (Fig. 32). This figure was relatively low compared to the data reported in WHO Situation Report 36. The decrease was mainly due to the limited availability of viral load test reagents in the country.

![Graph showing enrollment and initiation of ART]

Fig. 31. Trend of enrollment in HIV care and initiation of antiretroviral treatment (ART) in Q1 (January-March) of 2021, compared to the same period in 2020. Source: National AIDS Programme, Ministry of Health, unpublished data.

![Graph showing viral load tests and suppression]

Fig. 32. Viral load tests and viral load suppression performed in Q1 (January-March) of 2021, compared to the same period in 2020. Source: National AIDS Programme, Ministry of Health, unpublished data.
iv. The number of pregnant women tested for HIV and syphilis in Q1 (January-March) of 2021 decreased by 17% and 29%, respectively, compared to the same period in 2020 (Fig. 33). This may be explained by a decrease in the number of health facility visits among pregnant women during the COVID-19 pandemic.

![Graph: Number of pregnant women tested for HIV and syphilis in Q1 (January-March) of 2021, compared to the same period in 2020.](image)

Fig. 33. Number of pregnant women tested for HIV and syphilis in Q1 (January-March) of 2021, compared to the same period in 2020. Source: National AIDS Programme, Ministry of Health, unpublished data.

v. Similar to the HIV programme, there was a decrease in STIs case finding in Q1 2021, compared to the same period in 2020 (Fig. 34). This included a 21% decrease in urethral discharge diagnosis, 18% for urethritis gonorrhoea, 42% for cervicitis and 15% for syphilis.

![Graph: Number of sexually transmitted diseases (STIs) cases in Q1 (January-March) of 2021, compared to the same period in 2020.](image)

Fig. 34. Number of sexually transmitted diseases (STIs) cases in Q1 (January-March) of 2021, compared to the same period in 2020. Source: National AIDS Programme, Ministry of Health, unpublished data.
To maintain essential HIV services during the COVID-19 pandemic and achieve the HIV and STI national goals, WHO is supporting MoH in the following areas:

i. Guideline: As part of the HIV Self-Testing Africa (STAR) 3 Project, WHO supported MoH to develop technical guidance on community-based surveillance (CBS). This was done in collaboration with the Program for Appropriate Technology in Health (PATH International) and Family Health International (FHI) 360 through the Linkages across the Continuum of HIV Services for Key Populations Affected by HIV Project (LINKAGES). The technical guidance includes details on target populations, test kits, points of delivery, logistic mechanisms and recording and reporting mechanisms (including templates).

ii. HIV partner notification: In 2020, WHO supported the NAP in disseminating the national guidelines on partner notification (PN) and provided inputs on the development of the guidelines for communities. PN trainings of health providers and local communities (non-governmental organizations (NGOs)) were conducted in 2021 which were financed by the national government budget. This year, WHO facilitated PN trainings in North Kalimantan and East Java in collaboration with LINKAGES and the United Nations Population Fund (UNFPA).

iii. In line with the recommendations of the Indonesia Country Review on HIV, WHO conducted an exercise to estimate the STI burden in the country. This was implemented in collaboration with Avenir Health (a global health organization). The size of the STI burden was finalized in the first semester of 2021 and a draft report has been submitted to MoH for further review and dissemination.

iv. As a follow-up to one of the recommendations from the external review conducted in 2020, WHO supported the NAP to develop a guideline on HIV, syphilis and Hepatitis B sentinel surveillance, in collaboration with the MoH Subdirectorate of Family Health and Subdirectorate of Hepatitis and Gastrointestinal Tract Infection.

v. Recording and reporting: WHO continues to support the NAP monitoring team to ensure the implementation of the national guideline on recording and reporting at the health facility level.
The overall funding request for WHO operations and technical assistance is US$ 46 million (US$ 27 million for response and US$ 19 million for recovery phase), based on estimated needs as of July 2021 (Fig. 35).

Fig. 35. WHO funding situation for COVID-19 response, July 2021.

Data presented in this situation report have been taken from publicly available data from the MoH (https://infeksiemerging.kemkes.go.id/), COVID-19 Mitigation and National Economic Recovery Team (KPCPEN) (http://covid19.go.id) and provincial websites. There may be differences in national and provincial data depending on the source used. All data are provisional and subject to change.
Mobility analysis can be used as a proxy to monitor population mobility during the implementation of movement restriction policies during the COVID-19 pandemic. Increased mobility may lead to increased interactions among people, which may affect COVID-19 transmission. Mobility of populations can be measured using several approaches\(^8\). More information on the movement restriction policies that have been implemented in Indonesia and an initial analysis on mobility trends in Java and Bali is available on WHO Situation Report 63 (pages 27-31). Updates on mobility analysis in provinces in Java and Bali, as of 17 July, are presented in figures 36 to 42.

During the implementation of emergency PPKM, reduced mobility was observed in retail and recreation sectors as well as transit stations; however, this was still higher than the level of mobility observed during the first large-scale social restriction (Pembatasan Sosial Berskala Besar (PSBB)), especially in public places such as shopping centres and restaurants.

\(^8\) For purposes of current analysis in Indonesia, COVID-19 Community Mobility Reports (Google) have been used.
Fig. 36. Mobility analysis in DKI Jakarta, as of 17 July 2021

Note: The baseline day is the median value from the 5-week period from 3 January to 6 February 2020 (prior to the first reported cases in Indonesia). Mobility is calculated for the report date (unless there are gaps) and reported as a positive or negative percentage change compared to the baseline day. Source of data: mobility; cases.

Disclaimer: Mobility analysis cannot demonstrate a cause and effect relationship between mobility and COVID-19 cases; interpretation should be based on the use of proxy measures for mobility to examine association with cases. This note and disclaimer apply to Figs. 28-34.
Fig. 37. Mobility analysis in West Java, as of 17 July 2021. Source of data: mobility; cases.

Fig. 38. Mobility analysis in Central Java, as of 17 July 2021. Source of data: mobility; cases.
Fig. 39. Mobility analysis in DI Yogyakarta, as of 17 July 2021. Source of data: mobility; cases.

Fig. 40. Mobility analysis in East Java, as of 17 July 2021. Source of data: mobility; cases.
Fig. 41. Mobility analysis in Banten, as of 17 July 2021. Source of data: mobility; cases.

Fig. 42. Mobility analysis in Bali, as of 17 July 2021. Source of data: mobility; cases.
WEEKLY RISK ASSESSMENT

Table 2. Weekly risk assessment by province in Indonesia, as of 18 July 2021.

<table>
<thead>
<tr>
<th>Province</th>
<th>Case incidence trend</th>
<th>New cases in last 7 days</th>
<th>Change in new cases in last 7 days (%)</th>
<th>New deaths in last 7 days</th>
<th>Change in new deaths in last 7 days (%)</th>
<th>Testing rate (per 1000 population per week)</th>
<th>Weekly test positivity proportion in last 7 days (%)</th>
<th>2nd dose vaccination among target population (%)</th>
<th>2nd dose vaccination among older population (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh</td>
<td>Increase</td>
<td>698</td>
<td>-20%</td>
<td>57</td>
<td>43%</td>
<td>0.59</td>
<td>19%</td>
<td>5.4%</td>
<td>1.7%</td>
</tr>
<tr>
<td>North Sumatra</td>
<td>Increase</td>
<td>5933</td>
<td>238%</td>
<td>81</td>
<td>138%</td>
<td>1.50</td>
<td>27%</td>
<td>6.5%</td>
<td>12.4%</td>
</tr>
<tr>
<td>West Sumatra</td>
<td>Increase</td>
<td>4484</td>
<td>20%</td>
<td>65</td>
<td>-5%</td>
<td>3.71</td>
<td>22%</td>
<td>4.1%</td>
<td>1.9%</td>
</tr>
<tr>
<td>Riau</td>
<td>Increase</td>
<td>5814</td>
<td>48%</td>
<td>133</td>
<td>52%</td>
<td>1.78</td>
<td>46%</td>
<td>10.0%</td>
<td>10.8%</td>
</tr>
<tr>
<td>Jambi</td>
<td>Increase</td>
<td>2275</td>
<td>152%</td>
<td>20</td>
<td>-5%</td>
<td>1.37</td>
<td>44%</td>
<td>6.9%</td>
<td>14.0%</td>
</tr>
<tr>
<td>South Sumatra</td>
<td>Increase</td>
<td>4987</td>
<td>123%</td>
<td>109</td>
<td>7%</td>
<td>1.39</td>
<td>42%</td>
<td>6.1%</td>
<td>10.3%</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>Increase</td>
<td>1959</td>
<td>55%</td>
<td>8</td>
<td>-43%</td>
<td>1.88</td>
<td>52%</td>
<td>5.1%</td>
<td>10.8%</td>
</tr>
<tr>
<td>Lombok</td>
<td>Increase</td>
<td>2969</td>
<td>29%</td>
<td>81</td>
<td>88%</td>
<td>0.81</td>
<td>43%</td>
<td>4.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Bangka Belitung</td>
<td>Increase</td>
<td>3004</td>
<td>62%</td>
<td>75</td>
<td>74%</td>
<td>5.49</td>
<td>36%</td>
<td>8.1%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Riau Islands</td>
<td>Increase</td>
<td>4812</td>
<td>23%</td>
<td>156</td>
<td>108%</td>
<td>5.77</td>
<td>37%</td>
<td>11.4%</td>
<td>23.3%</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>Increase</td>
<td>83870</td>
<td>2%</td>
<td>764</td>
<td>-6%</td>
<td>18.28</td>
<td>43%</td>
<td>23.1%</td>
<td>70.6%</td>
</tr>
<tr>
<td>West Java</td>
<td>Increase</td>
<td>64584</td>
<td>30%</td>
<td>699</td>
<td>10%</td>
<td>3.20</td>
<td>40%</td>
<td>6.0%</td>
<td>12.2%</td>
</tr>
<tr>
<td>Central Java</td>
<td>Increase</td>
<td>30210</td>
<td>15%</td>
<td>1317</td>
<td>-6%</td>
<td>1.40</td>
<td>62%</td>
<td>7.8%</td>
<td>22.0%</td>
</tr>
<tr>
<td>DI Yogyakarta</td>
<td>Increase</td>
<td>25821</td>
<td>44%</td>
<td>403</td>
<td>41%</td>
<td>16.46</td>
<td>25%</td>
<td>14.0%</td>
<td>27.6%</td>
</tr>
<tr>
<td>East Java</td>
<td>Increase</td>
<td>44807</td>
<td>187%</td>
<td>1751</td>
<td>50%</td>
<td>2.48</td>
<td>45%</td>
<td>8.3%</td>
<td>11.0%</td>
</tr>
<tr>
<td>Banten</td>
<td>Increase</td>
<td>24781</td>
<td>540%</td>
<td>81</td>
<td>69%</td>
<td>4.50</td>
<td>42%</td>
<td>5.9%</td>
<td>16.4%</td>
</tr>
<tr>
<td>Bali</td>
<td>Increase</td>
<td>5861</td>
<td>53%</td>
<td>133</td>
<td>176%</td>
<td>4.22</td>
<td>32%</td>
<td>22.8%</td>
<td>25.4%</td>
</tr>
<tr>
<td>West Nusa Tenggara</td>
<td>Increase</td>
<td>2148</td>
<td>118%</td>
<td>34</td>
<td>40%</td>
<td>0.86</td>
<td>48%</td>
<td>5.0%</td>
<td>9.3%</td>
</tr>
<tr>
<td>East Nusa Tenggara</td>
<td>Increase</td>
<td>4023</td>
<td>22%</td>
<td>43</td>
<td>68%</td>
<td>1.59</td>
<td>52%</td>
<td>5.9%</td>
<td>5.2%</td>
</tr>
<tr>
<td>West Kalimantan</td>
<td>Increase</td>
<td>3799</td>
<td>115%</td>
<td>65</td>
<td>-42%</td>
<td>2.01</td>
<td>37%</td>
<td>4.8%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Central Kalimantan</td>
<td>Increase</td>
<td>2046</td>
<td>29%</td>
<td>23</td>
<td>92%</td>
<td>1.74</td>
<td>43%</td>
<td>10.2%</td>
<td>22.5%</td>
</tr>
<tr>
<td>South Kalimantan</td>
<td>Increase</td>
<td>2531</td>
<td>196%</td>
<td>38</td>
<td>31%</td>
<td>1.44</td>
<td>41%</td>
<td>6.7%</td>
<td>5.7%</td>
</tr>
<tr>
<td>East Kalimantan</td>
<td>Increase</td>
<td>10416</td>
<td>74%</td>
<td>312</td>
<td>70%</td>
<td>5.60</td>
<td>90%</td>
<td>9.1%</td>
<td>21.2%</td>
</tr>
<tr>
<td>North Kalimantan</td>
<td>Increase</td>
<td>14771</td>
<td>10%</td>
<td>27</td>
<td>170%</td>
<td>3.85</td>
<td>90%</td>
<td>6.3%</td>
<td>13.8%</td>
</tr>
<tr>
<td>North Sulawesi</td>
<td>Increase</td>
<td>1936</td>
<td>67%</td>
<td>29</td>
<td>45%</td>
<td>2.49</td>
<td>31%</td>
<td>7.8%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Central Sulawesi</td>
<td>Increase</td>
<td>1804</td>
<td>78%</td>
<td>44</td>
<td>120%</td>
<td>1.74</td>
<td>47%</td>
<td>5.3%</td>
<td>4.8%</td>
</tr>
<tr>
<td>South Sulawesi</td>
<td>Increase</td>
<td>3910</td>
<td>30%</td>
<td>61</td>
<td>58%</td>
<td>1.52</td>
<td>29%</td>
<td>7.4%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Southeast Sulawesi</td>
<td>Increase</td>
<td>1017</td>
<td>19%</td>
<td>20</td>
<td>-13%</td>
<td>0.84</td>
<td>44%</td>
<td>6.0%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Gorontalo</td>
<td>Increase</td>
<td>601</td>
<td>118%</td>
<td>9</td>
<td>200%</td>
<td>1.48</td>
<td>33%</td>
<td>8.0%</td>
<td>3.9%</td>
</tr>
<tr>
<td>West Sulawesi</td>
<td>Increase</td>
<td>555</td>
<td>50%</td>
<td>7</td>
<td>0%</td>
<td>1.44</td>
<td>26%</td>
<td>6.3%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Maluku</td>
<td>Increase</td>
<td>1124</td>
<td>42%</td>
<td>15</td>
<td>-42%</td>
<td>1.66</td>
<td>37%</td>
<td>4.6%</td>
<td>7.4%</td>
</tr>
<tr>
<td>North Maluku</td>
<td>Increase</td>
<td>1260</td>
<td>13%</td>
<td>28</td>
<td>63%</td>
<td>1.59</td>
<td>52%</td>
<td>3.7%</td>
<td>2.5%</td>
</tr>
<tr>
<td>West Papua</td>
<td>Increase</td>
<td>2426</td>
<td>35%</td>
<td>34</td>
<td>209%</td>
<td>4.28</td>
<td>56%</td>
<td>6.8%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Papua</td>
<td>Increase</td>
<td>1720</td>
<td>233%</td>
<td>3</td>
<td>0%</td>
<td>1.70</td>
<td>29%</td>
<td>5.5%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Source of data: [Cases, deaths and testing; vaccination](who.int/indonesia)

Note: Case incidence considers the trend of cases over the last three weeks. The change in new cases in the last seven days is marked as light red if there is an increase of 50% compared to the previous week. The change in new deaths is marked as light red if there is any increase in the percentage of deaths (and number of deaths ≥ 10) compared to the previous week. The testing rate is marked as yellow if it is less than 1/1000 population. Test positivity proportion is marked as light red if ≥ 20% and yellow if between 5% and 20%. The second dose vaccination is marked as light red if < 5% and yellow if between 5% and 10%. Target population for vaccination includes health workers, essential public service workers and older persons.
• Urgent action is needed to address the continuing surge of cases, notably in provinces in light red (Riau Islands, DKI Jakarta, West Java, Central Java, DI Yogyakarta, East Java, Banten, Bali, East Kalimantan and North Maluku) and in yellow. Bed occupancy rate has also been reported to be high in these provinces and is considered in the risk assessment.\(^9,10,11,12\)

• Strict implementation of PHSM throughout the country is crucial, even as the national vaccination coverage increases and expands to additional target groups. PHSM works in the context of variants of concern (VOCs) as demonstrated in India (see Situation Report 60: Lessons Learned) and other countries that are facing a surge of cases. Considering that some VOCs have much higher transmissibility, timely adjustments of PHSM is very important during a surge, including the use of stringent measures (such as movement restrictions) as quickly as possible.\(^13\)

• A total of 797 cases of the Delta variant was reported in 21 out of 34 provinces in Indonesia as of 19 July, which include eight new provinces (Papua, North Kalimantan, Bali, East Nusa Tenggara, Lampung, Riau Islands, West Sulawesi) compared to the previous week. The highest number of Delta variant cases was reported in DKI Jakarta (287); followed by West Java (228) and Central Java (132).

Table 3. Number of Delta variant reported by province in Indonesia, as of 19 July 2021.

<table>
<thead>
<tr>
<th>No.</th>
<th>Provinces</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DKI Jakarta</td>
<td>287</td>
</tr>
<tr>
<td>2.</td>
<td>West Java</td>
<td>228</td>
</tr>
<tr>
<td>3.</td>
<td>Central Java</td>
<td>132</td>
</tr>
<tr>
<td>4.</td>
<td>DI Yogyakarta</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>North Sumatra</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>West Nusa Tenggara</td>
<td>16</td>
</tr>
<tr>
<td>7.</td>
<td>East Java</td>
<td>14</td>
</tr>
<tr>
<td>8.</td>
<td>East Kalimantan</td>
<td>13</td>
</tr>
<tr>
<td>9.</td>
<td>South Sulawesi</td>
<td>11</td>
</tr>
<tr>
<td>10.</td>
<td>Papua</td>
<td>10</td>
</tr>
<tr>
<td>11.</td>
<td>North Kalimantan</td>
<td>8</td>
</tr>
<tr>
<td>12.</td>
<td>South Sumatra</td>
<td>8</td>
</tr>
</tbody>
</table>

Table Source of data

11 https://databoks.katadata.co.id/datapublish/2021/07/19/sudah-dua-kabupaten-kota-tingkat-keterisian-tempat-tidur-rs-capai-100
• During the implementation of emergency PPKM, testing rates increased in some provinces and districts; however, other provinces such as Aceh, Lampung, West Nusa Tenggara and Southeast Sulawesi continue to experience challenges in meeting the recommended benchmark of 1 suspected case tested per 1000 population per week. Testing services should be further strengthened across these provinces. Early diagnosis of cases is a backbone of public health response to COVID-19, as it enables timely isolation of cases, and tracing and quarantine of contacts.

• Strengthening genomic surveillance and investigation of clusters are also highly important when cases with Variants of Concern are suspected/confirmed.

• There is a need for hospitals to be equipped for the surge in cases, including ensuring the availability of isolation rooms, oxygen supplies, medical equipment, key therapeutics (e.g. corticosteroids, low-dose anticoagulants, antifungal medicines, and interleukin-6 receptor blockers), personal protective equipment (PPE), mobile field hospitals, body bags, as well as additional human resources and capacity to convert hospital rooms to isolation or intensive care unit (ICU) rooms.14

• Community engagement and support (strict implementation of personal protective measures) are essential to reducing the surge in cases, deaths and hospitalizations. It is important to provide accurate and tailored information and recommendations in order to counter misinformation and hoaxes.

• Vaccination needs to be expedited, especially for older populations with limited coverage. Several provinces recorded the second-dose vaccination coverage below 5% among older populations, including Aceh, West Sumatra, North Maluku, Papua, West Sulawesi, Southeast Sulawesi, Gorontalo, West Papua, Lampung, Central Sulawesi and East Nusa Tenggara. Actions to improve accessibility and awareness on the benefits of COVID-19 vaccination for older and high-risk

populations need to be strengthened. Moreover, vaccinated people should continue to adhere to public health and social measures.

- Health facilities should continue to adhere to key WHO recommended IPC measures, in particular, to contact, droplet and airborne precautions, hand hygiene practices, adequate environmental cleaning and disinfection, and ensuring adequate ventilation in rooms.
RECENT AND UPCOMING WHO RESOURCE MATERIALS

Table 4. Title and details of recent WHO resource materials

Source: https://www.who.int

<table>
<thead>
<tr>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO Weekly Epidemiological Update on COVID-19 (Edition 49), 20 July 2021</td>
<td>This edition includes data as of 18 July 2021. Two special focus updates are provided in this edition: (i) the release of a WHO COVID-19 detailed surveillance data dashboard, including a downloadable database feature and (ii) detailed update on the phenotypic characteristics of SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma and Delta (including updates on the geographic distribution of VOCs).</td>
</tr>
<tr>
<td>Episode 46 of Science in 5, WHO’s series of conversation in science, 16 July 2021</td>
<td>In this episode, Dr Gojka Roglic, WHO Technical Officer for Diabetes Programme explains the risk posed by COVID-19 to people living with diabetes.</td>
</tr>
<tr>
<td>Clinical features and prognostic factors of COVID-19 in people living with HIV hospitalized with suspected or confirmed SARS-CoV-2 infection, 15 July 2021</td>
<td>This report describes the demographics, clinical presentation, clinical outcomes and risk factors among people living with HIV (PLHIV) who have been hospitalized for suspected or confirmed COVID-19.</td>
</tr>
<tr>
<td>WHO technical consultation on oxygen access scale-up for COVID-19, 14 July 2021</td>
<td>To increase oxygen scale-up activities at country level, specifically in low- and middle-income countries (LMIC), WHO convened a consultation with other agencies and organization with proven experience implementing oxygen scale-up activities. This consultation identified gaps and further actions to scale-up access to medical oxygen; facilitated the understanding of the critical challenges of oxygen sources and distribution systems; and highlighted the need for operational guidance to scale-up for the COVID-19 surge (short-term) and beyond the current emergency response (long-term).</td>
</tr>
<tr>
<td>Safe Eid al Adha practices in the context of COVID-19, 13 July 2021</td>
<td>This publication provides up-to-date public health advice that can be applied across different national contexts to make activities related to Eid al Adha safer. Key messages are proposed to both policy-makers and the general public.</td>
</tr>
</tbody>
</table>
Online WHO COVID-19 courses:

- COVID-19 vaccination training for health workers
- Standard precautions: Environmental cleaning and disinfection
- Management of COVID-19 in long-term care facilities
- Operational planning guidelines and COVID-19
- Clinical management of severe acute respiratory infections
- Health and safety briefing for respiratory diseases – eProtect

WHO guidance:

- Infection prevention and control during health care when coronavirus disease (COVID-19) is suspected or confirmed
- Diagnostics, therapeutics, vaccine readiness, and other health products for COVID-19
- Modelling the health impacts of disruptions to essential health services during COVID-19

Infographics:

- COVID-19 vaccine and vaccination
- Vaccine prioritization
- Play your role
- Contact tracing: Confirmed contact & COVID-19 positive

Questions and answers:

- How to talk about vaccines
- COVID-19: Vaccines
- COVID-19: Vaccine research and development
- COVID-19: Vaccine access and allocation

Videos:

- Science in 5: Evolution of the SARS-CoV-2 virus
- Time to abide (1-10)
- COVID-19 virus variants

For more information please feel free to contact: seinocomm@who.int

WHO Indonesia Reports