HIGHLIGHTS

- As of 16 February, the Government of Indonesia reported 4,966,046 (64,718 new) confirmed cases of COVID-19, 145,622 (167 new) deaths and 4,375,234 recovered cases from 510 districts across 34 provinces.¹

- On 21 January, WHO updated its technical brief on enhancing readiness for Omicron (B.1.1.529) and recommended priority actions for Member States. It states that high levels of transmission due to Omicron have resulted in increases in hospitalization, continue to pose demands on health care systems, and may lead to significant morbidity, particularly in vulnerable populations. The key recommendations include: (i) enhancing surveillance with rapid testing, cluster investigations, contact tracing, isolation of cases and supported quarantine of contacts, (ii) accelerating COVID-19 vaccination, particularly among high priority populations, (iii) escalating public health and social measures guided by risk assessment, considering the epidemiological situation, response capacities, vaccination coverage and public behaviours, knowledge and perceptions, and (iv) implementing an evidence-informed and risk-based approach to adjust international travel measures.

Fig. 1. Geographic distribution of confirmed COVID-19 cases reported in the last seven days per 100,000 population in Indonesia across provinces, from 10 to 16 February 2022. Source of data

Disclaimer: The number of cases reported daily is not equivalent to the number of persons who contracted COVID-19 on that day; reporting of laboratory-confirmed results may take up to one week from the time of testing.

¹ https://covid19.go.id/peta-sebaran-covid19

WHO Indonesia Situation Report – 87
who.int/indonesia
Case Incidence

- On 16 February, 64,718 new and 4,966,046 cumulative cases were reported in Indonesia. The weekly number of cases from 7 to 13 February was 291,298, an increase of 68% compared to the previous week. On 16 February, 167 new and 145,622 cumulative COVID-19 deaths were reported nationwide. The weekly number of new deaths from 7 to 13 February was 622, an increase of 148% compared to the previous week (Fig. 2).

Fig. 2. Weekly number of confirmed COVID-19 cases and deaths reported in Indonesia, as of 13 February 2022. [Source of data](#)

Disclaimer: Prior to 10 February 2021, SARS-CoV-2 diagnosis was conducted using polymerase chain reaction (PCR). Since this date, confirmed cases include those who tested positive using nucleic acid amplification test (NAAT) (e.g. PCR) and antigen-detecting rapid diagnostic test (Ag-RDT). The number of cases reported daily is not equivalent to the number of persons who contracted COVID-19 on that day and might be influenced by the number of people tested on that day (see Fig. 6); reporting of laboratory-confirmed results may take up to one week from the time of testing. Therefore, caution must be taken in interpreting this figure and the epidemiological curve for further analysis, both at the national and subnational level.
During the week of 7 to 13 February, all provinces experienced an increase in the number of cases compared to the previous week; 30 provinces experienced an increase of 100% or more, including two with an increase of more than 500%: Gorontalo (635%) and North Kalimantan (505%) (Fig. 3). Stringent public health and social measures (PHSM), such as use of well-fitting masks, physical distancing, ventilation of indoor spaces, and hand hygiene should continue to be urgently implemented throughout the country.

Fig. 3. Percentage change of weekly number of confirmed cases by province during 7 to 13 February 2022 compared to the previous week. [Source of data]

Disclaimer: The number of weekly confirmed cases is calculated taking into consideration the daily number of reported cases. It is important to conduct further investigation if there is a substantial change in new cases, especially in provinces with a change of 50% or more. Other factors, such as testing and contact tracing, may help elucidate the reasons behind substantial changes. Additional indicators, including case incidence and mortality, should be considered to guide adjustment of PHSM.
From 7 to 13 February, the weekly COVID-19 incidence per 100 000 population nationwide, in Java-Bali region and in provinces outside Java-Bali region (non-Java-Bali) was 66.1, 104.3 and 13.8, respectively (Fig. 4). The weekly incidence at national level and in Java-Bali region increased to high level of community transmission (CT3) during the week of 7 to 13 February. Province and district level analyses are needed to evaluate these trends and identify clusters followed by containment measures such as isolation of cases and quarantine for close contacts.

Fig. 4. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period reported at national and subnational levels (Java-Bali and non-Java-Bali) from 13 April 2020 (when Indonesia first reported community transmission in the country) to 13 February 2022, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data

Disclaimer: There are seven categories for transmission classification: (1) no (active) cases; (2) imported/sporadic cases; (3) cluster of cases; (4) community transmission 1 (CT1); (5) community transmission 2 (CT2); (6) community transmission 3 (CT3); and (7) community transmission 4 (CT4).

Caution should be exercised when interpreting this indicator due to limitations listed in the WHO interim guidance. Other epidemiological indicators also need to be evaluated to decide on the level of community transmission. This disclaimer applies to indicators at national (Fig. 3) and subnational levels (Fig. 4-5).
Three provinces were at a very high level of community transmission (CT4) during the week of 7 to 13 February 2022: the weekly case incidence per 100 000 population was 641.2 in DKI Jakarta, 204.3 in Bali and 188.3 in Banten (Fig. 5). Based on the WHO interim guidance, this means that there was a very high risk of COVID-19 infection for the general population and a very high incidence of locally acquired, widely dispersed cases detected in the past 14 days. In the coming weeks, the significant surge of cases can be expected in other provinces. Therefore, preventative measures should be strengthened.

Fig. 5. Incidence of COVID-19 per 100 000 population per week averaged over a two-week period by province in Indonesia during 7 to 13 February 2022, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Source of data
- Case incidence at national and subnational level has continued to increase significantly over the past four weeks (Fig. 6). Details on incidence in each province are available here.

Fig. 6. Incidence of COVID-19 cases per 100,000 population per week averaged over a two-week period in five regions in Indonesia (Java-Bali, Sumatra, Kalimantan, Sulawesi and Nusa Tenggara-Maluku-Papua), from 4 January 2021 to 13 February 2022, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. Cases from the last 8 weeks have been highlighted Source of data
Test Positivity Proportion

- Nationwide test positivity proportion has increased to 16.5% during week of 7 to 13 February 2022. This proportion can be interpreted reliably only with comprehensive surveillance and testing in the order of at least one person tested per 1000 population per week. Since mid-May 2021, the testing rate of > 1 per 1000 population per week has been maintained; over the past three weeks, the rate has been > 5 per 1000 population per week. It is critical to ensure the continuation of a rigorous testing strategy to rapidly identify COVID-19 cases among suspected cases and close contacts (Table 2. Weekly Risk Assessment, page 23).

Fig. 7. Weekly test positivity proportion and people tested per 1000 population per week at the national level, as of 13 February 2022, classified by level of community transmission (CT): CT1: low incidence (< 2%); CT2: moderate incidence (2% - < 5%); CT3: high incidence (5% - < 20%); CT4: very high incidence (20%+). Source of data

Disclaimer: Caution should be exercised when interpreting this indicator due to limitations listed in the WHO interim guidance. Other epidemiological indicators also need to be evaluated to determine the level of community transmission.
Mortality

- During the week of 7 to 13 February, the weekly number of confirmed COVID-19 deaths in 33 provinces remained < 1 death per 100,000 population; however, in DKI Jakarta, it has increased and was over 1 death per 100,000 population (Fig. 8). With Omicron as the dominant variant, the number of deaths may increase following the significant increase in cases.

Fig. 8. Number of confirmed COVID-19 deaths per 100,000 population per week averaged over a two-week period by province in Indonesia during 7 to 13 February 2022, classified by level of community transmission (CT): CT1: low incidence; CT2: moderate incidence; CT3: high incidence; CT4: very high incidence. [Source of data]

Disclaimer: Based on data availability, only confirmed COVID-19 deaths have been included. As per WHO definition, however, death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case is a COVID-19-related death, unless there is a clear alternative cause of death that cannot be related to COVID-19 (e.g., trauma); there should be no period of complete recovery between the illness and death. Evaluation of excess mortality is also beneficial to complement information on COVID-19 death.
During the week of 7 to 13 February, the number of confirmed COVID-19 deaths at national level and in non-Java-Bali region has increased to 0.04 per 100,000 population compared to the previous week. During the same period, deaths in Java-Bali region increased to 0.2 per 100,000 population compared to 0.1 per 100,000 population in the previous week (Fig. 9).

Fig. 9. Weekly number of confirmed COVID-19 deaths per 100,000 population per week averaged over a two-week period reported at national level and in Java-Bali and non-Java-Bali regions, as of 13 February 2022. Source of data

Disclaimer: Based on data availability, only confirmed COVID-19 deaths have been included. As per WHO definition, however, death resulting from a clinically compatible illness in a probable or confirmed COVID-19 case is a COVID-19-related death, unless there is a clear alternative cause of death that cannot be related to COVID-19 (e.g., trauma); there should be no period of complete recovery between the illness and death.
Variants of Concern (VOCs) and Omicron

- The first Omicron case in Indonesia was reported on 16 December 2021, from a sample collected on 8 December. As of 14 February 2022, a total of 6025 Omicron cases were reported to the Global Initiative on Sharing All Influenza Data (GISAID) (Fig. 10).

![Graph showing the number of SARS-CoV-2 whole genome sequences and Omicron variant detected](image)

Fig. 10. The number of SARS-CoV-2 whole genome sequences data reported at national level from 6 December 2021 to 13 February 2022. Source of data: Global Initiative on Sharing All Influenza Data (GISAID).

Disclaimer: Data was retrieved from GISAID on 13 February 2022. The number of SARS-CoV-2 sequences is dynamic and will change when the genomic surveillance laboratory network submits new data to GISAID. Caution is needed in interpreting the graph as it depends on the genomic surveillance sampling strategy implemented in the country (e.g., targeted sampling for international travellers, random sampling from the community).
As of 13 February, four lineages of Omicron variant (from the parent lineage of B.1.529) have been identified in Indonesia: BA.1, BA.1.1, BA.2, and BA.3 (Fig. 11). The lineages of BA.1 and BA.1.1 are the most dominant in Indonesia. Based on the currently available evidence, the BA.2 lineage shares many mutations characteristics with BA.1 lineage. However, it does not carry the Spike 69-70 deletion associated with S-gene target failure.

Fig. 11. Omicron lineages in Indonesia. Source of data: Global Initiative on Sharing All Influenza Data (GISAID).

Disclaimer: Data was retrieved from GISAID on 13 February 2022. The number of SARS-CoV-2 sequences is dynamic and will change when the genomic surveillance laboratory network submits new data to GISAID.
• On 13 February, the reported number of COVID-19 cases hospitalized in DKI Jakarta was 18,900, an increase from 14,625 cases one week prior. On the same date, the reported number of cases in self-isolation also increased from 52,594 to 54,602 cases (Fig. 12).

Fig. 12. Number of COVID-19 cases hospitalized and in self-isolation in DKI Jakarta, from 1 September 2020 to 13 February 2022. Source of data

• On 12 February, bed occupancy rate (BOR) at national level increased to 30%\(^2\) compared to 25% in the previous week\(^3\). BOR in intensive care units (ICU) also increased to 20%, compared to 14% in the previous week.

WHO continues to translate and share important health messages on its website and social media platforms – **Twitter** and **Instagram** – and has recently published:

Infographics:
- **Do it all**
- **COVID-19 Homecare**
- **Omicron**

Fig. 13. WHO infographics on ‘Omicron’, February 2022.
As of 16 February, 326 318 855 vaccine doses have been administered in the national COVID-19 vaccination campaign. On the same date, 137 485 375 people out of 270 203 917 total population (50.9 per 100 total population) have been fully vaccinated; 188 833 480 people (69.9 per 100 total population) have received at least one dose of the vaccine (Fig. 14). Nationwide, 40.9 per 100 total population of older people (26 841 922) have been fully vaccinated; 59.5 per 100 total population of older people have received at least one dose of the vaccine.

Fig. 14. Number of people fully vaccinated, people receiving at least one dose for COVID-19 per 100 total population by province in Indonesia, as of 16 February 2022. Source of data: 2020 Census result, Central Bureau of Statistics

Disclaimer: Data are recorded based on the location of the vaccination site. Total population is calculated based on provincial data (national identification number (Nomor Induk Kependudukan (NIK))).
Table 1. COVID-19 vaccination by each target population in Indonesia, as of 16 February 2022. **Source of data**

<table>
<thead>
<tr>
<th>Target population</th>
<th>Total target population</th>
<th>Number of partially vaccinated</th>
<th>%</th>
<th>Number of fully vaccinated</th>
<th>%</th>
<th>Number of unvaccinated</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health workers</td>
<td>1 468 764</td>
<td>70 407</td>
<td>4.8</td>
<td>1 952 608</td>
<td>132.9</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Older people</td>
<td>21 553 118</td>
<td>4 981 613</td>
<td>23.1</td>
<td>10 977 337</td>
<td>50.9</td>
<td>5 594 168</td>
<td>26.0</td>
</tr>
<tr>
<td>Essential public service workers</td>
<td>17 327 167</td>
<td>1 999 529</td>
<td>11.5</td>
<td>18 236 436</td>
<td>105.2</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>General population</td>
<td>141 211 181</td>
<td>28 904 696</td>
<td>20.5</td>
<td>77 751 611</td>
<td>55.1</td>
<td>34 554 874</td>
<td>24.5</td>
</tr>
<tr>
<td>Adolescents aged 12-17</td>
<td>26 705 490</td>
<td>4 977 596</td>
<td>18.6</td>
<td>19 590 481</td>
<td>73.4</td>
<td>2 137 413</td>
<td>8.0</td>
</tr>
<tr>
<td>Children aged 6-11</td>
<td>26 400 300</td>
<td>10 342 351</td>
<td>39.6</td>
<td>7 730 439</td>
<td>29.3</td>
<td>8 327 510</td>
<td>31.5</td>
</tr>
<tr>
<td>Gotong Royong scheme*</td>
<td>70 407</td>
<td>4.8</td>
<td>1 952 608</td>
<td>132.9</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Note: General population includes vulnerable groups (e.g., persons with disabilities and marginalized groups); total number vaccinated includes eligible target population with Gotong Royong scheme. *The Gotong Royong scheme does not have a separate total target population from the government vaccination programme.*

Disclaimer: Vaccination coverage greater than 100% is due to differences in actual versus estimated target population. Due to the ongoing data cleaning process, vaccination coverage may be temporarily affected.

- The weekly number of COVID-19 vaccine doses administered from 7 to 13 February was 5 728 621, a 25.8% increase compared to 4 553 326 doses in the previous week. By age group, the highest number of doses administered was for vaccination of children aged 6 to 11 years; followed by people above 18 years of age, adolescents aged 12 to 17 years, and older people (Fig. 15).
On 21 January, the Strategic Advisory Group of Experts (SAGE) on Immunization has published the updated version of roadmap for prioritizing uses of COVID-19 vaccines to support countries in implementing their respective vaccination programmes against COVID-19. The major recommendations have been summarized below:

- Within a priority-use group, increasing the primary vaccination series coverage rate has greater impact on reducing hospitalizations and deaths per dose than use of equivalent vaccine supply to increase the booster dose coverage rate.

- Across priority-use groups, increasing booster dose coverage rate for higher priority-use groups will usually yield greater reductions in severe disease and death than use of equivalent vaccine supply to increase the primary vaccination series coverage rates of lower priority-use groups.

Fig. 15. Number of weekly doses administered by age group. Data as of 14 February 2022, accessed at 8 PM. Source of data

Note: People aged 18 – 59 years calculation = health workers + essential public service workers + general population + people who received vaccination through Gotong Royong scheme. Doses administered calculation = Dose 1 + Dose 2.
Countries with moderate-to-high rates of primary series coverage in higher priority-use groups should usually prioritize available resources to first achieve high booster dose coverage rates in higher priority-use groups before offering vaccine doses to lower priority-use groups.

PARTNER COORDINATION

- On 4 February, WHO convened the 41st meeting of key development partners to discuss and coordinate the COVID-19 response in Indonesia. The meeting was attended by the British Embassy, the Australian Government Department of Foreign Affairs and Trade (DFAT), European Union (EU), the Global Alliance for Vaccines and Immunization (GAVI), the Japan International Cooperation Agency (JICA), the United Nations Children’s Fund (UNICEF), United States Agency for International Development (USAID), United States Centers for Disease Control and Prevention (US CDC), the World Bank, and World Food Programme (WFP). WHO presented COVID-19 updates and key points on Omicron variant, discussed latest epidemiological situation at national and subnational levels, and presented WHO activities in support of the national pandemic response. During the meeting, the key points of discussion among partners included vaccination coverage and logistics, paediatric COVID-19 cases, vaccine effectiveness study, and COVID-19 surveillance.

- The overall funding request for WHO operations and technical assistance is US$ 46 million (US$ 27 million for response and US$ 19 million for recovery phase), based on estimated needs as of January 2022 (Fig. 16).
Data presented in this situation report have been taken from publicly available data from the MoH (https://infeksiemerging.kemkes.go.id; https://vaksin.kemkes.go.id), COVID-19 Mitigation and National Economic Recovery Team (KPCPEN) (http://covid19.go.id) and provincial websites. There may be differences in national and provincial data depending on the source used. All data are provisional and subject to change.
Mobility analysis can be used as a proxy to monitor population mobility during the implementation of movement restriction policies. Increased mobility may lead to increased interactions among people, which may affect COVID-19 transmission. More information on movement restriction policies implemented in Indonesia and previous analyses on mobility trends in Java and Bali are available in WHO Situation Reports 63 to 73 and Situation Reports 80 to 86.

An increasing trend in community mobility was observed in all provinces in Java-Bali since September 2021. A notable increase in community mobility in retail and recreation was observed in West Java, Central Java, East Java and DI Yogyakarta, where pre-pandemic mobility levels have been surpassed (Situation Report 70 (pages 19-21)). As all provinces are experiencing surge of cases, escalating PHSM in a timely manner needs to be considered to slow down COVID-19 transmission. Additionally, implementation of other PHSM measures such as hand hygiene, mask use, avoiding crowded spaces, and physical distancing have to be encouraged and monitored at community level.

Updates on mobility analysis in West Java, Central Java, DI Yogyakarta, East Java and Banten, as of 12 February, are presented in Fig. 17 to 21. Updates on mobility analysis in other provinces in Java and Bali are available here.
Fig. 17. Mobility analysis in West Java, as of 12 February 2022.

Note: The baseline day is the median value from the 5-week period from 3 January to 6 February 2020 (prior to the first reported cases in Indonesia). Mobility is calculated for the report date (unless there are gaps) and reported as a positive or negative percentage change compared to the baseline day. Source of data: mobility; cases.

Disclaimer: Mobility analysis cannot demonstrate a cause-and-effect relationship between mobility and COVID-19 cases; interpretation should be based on the use of proxy measures for mobility to examine association with cases. This note and disclaimer apply to Fig. 17-21.
Fig. 18. Mobility analysis in Central Java, as of 12 February 2022. Source of data: mobility; cases.

Fig. 19. Mobility analysis in DI Yogkarta, as of 12 February 2022. Source of data: mobility; cases.
Fig. 20. Mobility analysis in East Java, as of 12 February 2022. Source of data: mobility; cases.

Fig. 21. Mobility analysis in Banten, as of 12 February 2022. Source of data: mobility; cases.
WEEKLY RISK ASSESSMENT

Table 2. Weekly risk assessment by province in Indonesia, 6 to 13 February

<table>
<thead>
<tr>
<th>Province</th>
<th>Case incidence trend</th>
<th>Incidence per 100 000 population</th>
<th>Death per 100 000 population</th>
<th>Testing rate (per 1000 population per week)</th>
<th>Weekly positivity proportion in the last 7 days (%)</th>
<th>Fully vaccinated % among all population</th>
<th>Fully vaccinated % among older population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh</td>
<td>Increase</td>
<td>2.3</td>
<td>0.03</td>
<td>1.6</td>
<td>3.6%</td>
<td>31.9%</td>
<td>30.6%</td>
</tr>
<tr>
<td>North Sumatra</td>
<td>Increase</td>
<td>11.6</td>
<td>0.02</td>
<td>4.5</td>
<td>6.0%</td>
<td>47.3%</td>
<td>47.2%</td>
</tr>
<tr>
<td>West Sumatra</td>
<td>Increase</td>
<td>9.3</td>
<td>0.01</td>
<td>3.7</td>
<td>7.1%</td>
<td>41.4%</td>
<td>33.9%</td>
</tr>
<tr>
<td>Riau</td>
<td>Increase</td>
<td>9.7</td>
<td>0.01</td>
<td>3.9</td>
<td>5.9%</td>
<td>46.2%</td>
<td>43.0%</td>
</tr>
<tr>
<td>Jambi</td>
<td>Increase</td>
<td>5.5</td>
<td>0.04</td>
<td>2.5</td>
<td>5.5%</td>
<td>47.8%</td>
<td>47.7%</td>
</tr>
<tr>
<td>South Sumatra</td>
<td>Increase</td>
<td>12.3</td>
<td>0.02</td>
<td>3.9</td>
<td>8.8%</td>
<td>42.4%</td>
<td>42.3%</td>
</tr>
<tr>
<td>Bengkulu</td>
<td>Increase</td>
<td>7.8</td>
<td>0.08</td>
<td>3.5</td>
<td>5.4%</td>
<td>45.3%</td>
<td>47.8%</td>
</tr>
<tr>
<td>Lampung</td>
<td>Increase</td>
<td>11.9</td>
<td>0.07</td>
<td>3.9</td>
<td>7.4%</td>
<td>42.7%</td>
<td>40.7%</td>
</tr>
<tr>
<td>Bangka Belitung Islands</td>
<td>Increase</td>
<td>22.8</td>
<td>0.06</td>
<td>10.9</td>
<td>4.8%</td>
<td>55.9%</td>
<td>59.7%</td>
</tr>
<tr>
<td>Riau Islands</td>
<td>Increase</td>
<td>13.2</td>
<td>0.02</td>
<td>15.4</td>
<td>3.2%</td>
<td>67.5%</td>
<td>68.4%</td>
</tr>
<tr>
<td>DKI Jakarta</td>
<td>Increase</td>
<td>64.12</td>
<td>1.36</td>
<td>34.4</td>
<td>22.4%</td>
<td>97.8%</td>
<td>94.8%</td>
</tr>
<tr>
<td>West Java</td>
<td>Increase</td>
<td>83.0</td>
<td>0.04</td>
<td>6.6</td>
<td>20.5%</td>
<td>49.0%</td>
<td>52.1%</td>
</tr>
<tr>
<td>Central Java</td>
<td>Increase</td>
<td>17.8</td>
<td>0.09</td>
<td>3.2</td>
<td>14.1%</td>
<td>56.5%</td>
<td>58.9%</td>
</tr>
<tr>
<td>DI Yogyakarta</td>
<td>Increase</td>
<td>43.4</td>
<td>0.13</td>
<td>17.3</td>
<td>6.4%</td>
<td>77.3%</td>
<td>74.7%</td>
</tr>
<tr>
<td>East Java</td>
<td>Increase</td>
<td>30.4</td>
<td>0.05</td>
<td>5.2</td>
<td>14.1%</td>
<td>52.9%</td>
<td>48.4%</td>
</tr>
<tr>
<td>Banten</td>
<td>Increase</td>
<td>388.3</td>
<td>0.10</td>
<td>10.3</td>
<td>27.7%</td>
<td>47.8%</td>
<td>49.2%</td>
</tr>
<tr>
<td>Bali</td>
<td>Increase</td>
<td>204.3</td>
<td>0.77</td>
<td>14.0</td>
<td>23.0%</td>
<td>61.5%</td>
<td>74.3%</td>
</tr>
<tr>
<td>West Nusa Tenggara</td>
<td>Increase</td>
<td>20.6</td>
<td>0.07</td>
<td>4.1</td>
<td>15.8%</td>
<td>45.1%</td>
<td>47.6%</td>
</tr>
<tr>
<td>East Nusa Tenggara</td>
<td>Increase</td>
<td>6.0</td>
<td>0.02</td>
<td>3.6</td>
<td>3.5%</td>
<td>35.0%</td>
<td>33.1%</td>
</tr>
<tr>
<td>West Kalimantan</td>
<td>Increase</td>
<td>10.7</td>
<td>0.01</td>
<td>4.3</td>
<td>7.0%</td>
<td>41.3%</td>
<td>36.8%</td>
</tr>
<tr>
<td>Central Kalimantan</td>
<td>Increase</td>
<td>12.4</td>
<td>0.03</td>
<td>5.0</td>
<td>7.8%</td>
<td>45.7%</td>
<td>41.7%</td>
</tr>
<tr>
<td>South Kalimantan</td>
<td>Increase</td>
<td>31.9</td>
<td>0.12</td>
<td>5.8</td>
<td>12.5%</td>
<td>57.1%</td>
<td>29.7%</td>
</tr>
<tr>
<td>East Kalimantan</td>
<td>Increase</td>
<td>28.1</td>
<td>0.03</td>
<td>16.0</td>
<td>4.7%</td>
<td>55.7%</td>
<td>51.7%</td>
</tr>
<tr>
<td>North Kalimantan</td>
<td>Increase</td>
<td>5.4</td>
<td>0.00</td>
<td>9.6</td>
<td>1.7%</td>
<td>55.2%</td>
<td>51.2%</td>
</tr>
<tr>
<td>North Sulawesi</td>
<td>Increase</td>
<td>22.2</td>
<td>0.04</td>
<td>6.7</td>
<td>10.6%</td>
<td>44.7%</td>
<td>47.5%</td>
</tr>
<tr>
<td>Central Sulawesi</td>
<td>Increase</td>
<td>3.9</td>
<td>0.04</td>
<td>4.3</td>
<td>4.0%</td>
<td>33.4%</td>
<td>29.3%</td>
</tr>
<tr>
<td>South Sulawesi</td>
<td>Increase</td>
<td>11.2</td>
<td>0.03</td>
<td>4.7</td>
<td>7.2%</td>
<td>41.6%</td>
<td>37.5%</td>
</tr>
<tr>
<td>Southeast Sulawesi</td>
<td>Increase</td>
<td>9.1</td>
<td>0.04</td>
<td>4.1</td>
<td>6.9%</td>
<td>36.5%</td>
<td>30.7%</td>
</tr>
<tr>
<td>Gorontalo</td>
<td>Increase</td>
<td>3.6</td>
<td>0.00</td>
<td>3.1</td>
<td>3.3%</td>
<td>43.9%</td>
<td>36.6%</td>
</tr>
<tr>
<td>West Sulawesi</td>
<td>Increase</td>
<td>2.3</td>
<td>0.01</td>
<td>2.4</td>
<td>2.6%</td>
<td>33.8%</td>
<td>26.9%</td>
</tr>
<tr>
<td>Maluku</td>
<td>Increase</td>
<td>45.7</td>
<td>0.16</td>
<td>5.4</td>
<td>17.8%</td>
<td>28.9%</td>
<td>27.6%</td>
</tr>
<tr>
<td>North Maluku</td>
<td>Increase</td>
<td>2.9</td>
<td>0.00</td>
<td>4.6</td>
<td>1.8%</td>
<td>31.1%</td>
<td>25.2%</td>
</tr>
<tr>
<td>West Papua</td>
<td>Increase</td>
<td>48.9</td>
<td>0.06</td>
<td>12.7</td>
<td>10.1%</td>
<td>27.0%</td>
<td>20.6%</td>
</tr>
<tr>
<td>Papua</td>
<td>Increase</td>
<td>40.3</td>
<td>0.02</td>
<td>7.9</td>
<td>11.5%</td>
<td>15.4%</td>
<td>10.8%</td>
</tr>
</tbody>
</table>

Note: Case incidence trend considers the trend of cases over the last three weeks. Case incidence is marked as light red if > 150 per 100 000 population and orange if between 50 to 150. Death is marked as light red if > 5 per 100 000 population and orange if between 2 and 5. The testing rate is marked as yellow if it is less than 1/1000 population. Test positivity proportion is marked as light red if ≥ 20% and yellow if between 5% and 20%. The proportion of those fully vaccinated among older population is marked as light red if < 20%, orange if between 20% and 50%, yellow if between 50% and 80% and green if the vaccination rate > 80%. Target population for vaccination includes health workers, essential public service workers, older persons, vulnerable populations and people aged 18 years and above and children aged 12-17 years. Vaccination coverage greater than 100% is due to differences in actual versus estimated target population.
Table 3. Title and details of recent WHO resource materials

<table>
<thead>
<tr>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO Weekly Epidemiological Update on COVID-19 (Edition 79), 15 February 2022</td>
<td>This edition includes epidemiological updates as of 13 February 2022. It also provides updates on the geographic distribution of circulating SARS-CoV-2 variants of concern (VOCs), including the spread and prevalence of the Omicron variant, and the BA.2 Pango lineage of Omicron.</td>
</tr>
<tr>
<td>Public health surveillance for COVID-19: interim guidance, 14 February 2022</td>
<td>This document summarizes current WHO guidance for public health surveillance of COVID-19 in humans caused by infection with SARS-CoV-2. This version has been developed through a structured process of which the inception pre-dates the emergence of the Variant of Concern Omicron. It superseded the previous version published on 16 December 2020.</td>
</tr>
<tr>
<td>COVID-19 home care bundle for health care workers, 9 February 2022</td>
<td>This job-aid poster provides instructions and recommendations for health care workers on home care of COVID-19 patients with mild symptoms.</td>
</tr>
<tr>
<td>Third round of the global pulse survey on continuity of essential health services during the COVID-19 pandemic (Interim report, November-December 2021), 7 February 2022</td>
<td>This report presents global findings from 129 countries, territories and areas that participated in the third round of the WHO ‘Global pulse survey on continuity of essential health services during the COVID-19 pandemic’ during November-December 2021. The findings offer critical insights from country key informants into the impact of the COVID-19 pandemic on essential health services, the challenges health systems are facing to ensure access to essential COVID-19 tools, and how countries are responding to mitigate disruptions, recover services, and strengthen health service resilience in the long-term.</td>
</tr>
<tr>
<td>COVID-19 clinical care pathway (CARE): confirm SARS-CoV-2 infection, assess symptoms, risk factors and severity, respond with appropriate care and treatment, evaluate clinical response and recovery, 4 February 2022</td>
<td>This COVID-19 CARE pathway is a living tool to support health care workers visualize the current clinical and therapeutic recommendations to be considered in the care planning for patients with COVID-19. It is aligned with the 8th version of the WHO Therapeutics and COVID-19: living guideline (published on 14 January 2022) and the 3rd version of the WHO COVID-19 Clinical management: living guidance (published on 23 November 2021).</td>
</tr>
</tbody>
</table>
End-to-end integration of SARS-CoV-2 and influenza sentinel surveillance: revised interim guidance, 31 January 2022

This interim guidance is an update and replaces the two previous documents: ‘Maintaining surveillance of influenza and monitoring of SARS-CoV-2’ (published on 8 November 2020) and ‘Operational considerations to expedite genomic sequencing component of GISRS surveillance of influenza SARS-CoV-2’ (published on 16 February 2021). It complements the ‘Guidance for surveillance of SARS-CoV-2 variants (published on 9 August 2021)’ and the ‘Public health surveillance for COVID-19 (interim guidance, published on 16 December 2020)’. This document provides interim guidance for the integration of SARS-CoV-2 and influenza virologic and genomic surveillance, from sentinel site case enrolment and sampling to the eventual sharing of the virus sequence data. This interim guidance will continue to be reviewed in the context of anticipated scientific, technical, epidemiological and operational developments over the next nine to 12 months.

Care, cleaning and disinfection of BiPAP/CPAP devices, oxygen concentrators, pulse oximeters and patient monitors devices, high flow nasal cannula, invasive mechanical ventilators, 27 January 2022

These checklists provide a step-by-step on how to care, clean and disinfect respiratory medical equipment in hospitals and health facilities to ensure the optimal infection prevention and control during the use of respiratory medical equipment and between patients.

Enhancing response to Omicron SARS-CoV-2 variant, 21 January 2022

This is the updated version of the document of the same title, which was first published on 28 November 2021 and last updated on 7 January 2022. This document provides updated information on the global risk assessment of the VOC, Omicron (B.1.1.529). It also provides public health advice and priority actions for Member States, based on the currently best available evidence.
Online WHO COVID-19 courses:
- Clinical management of patients with COVID-19: General considerations
- COVID-19 vaccination training for health workers
- Standard precautions: Environmental cleaning and disinfection
- Management of COVID-19 in long-term care facilities
- Operational planning guidelines and COVID-19
- Clinical management of severe acute respiratory infections
- Health and safety briefing for respiratory diseases – eProtect

WHO guidance:
- COVAXIN® (BBV152) - Inactivated, COVID-19 vaccine
- Medical equipment related to oxygen therapy - Cleaning - task sequence
- Care, cleaning and disinfection of respiratory equipment in sterile services department
- Checklists for care, cleaning, disinfection and sterilization of respiratory devices
- An implementation guide for the management of COVID-19 on board cargo ships and fishing vessels
- WHO recommendations on mask use by health workers, in light of the Omicron variant of concern: WHO interim guidelines
- COVID-19 infection prevention and control living guideline: mask use in community settings
- Infection prevention and control (IPC) in health-care facilities in the event of a surge or resurgence in cases of COVID-19

Infographics:
- Ventilation
- Preventive measures
- Reducing risks
- Do it all
- When you travel
- Festivities
- Back to school

Questions and answers:
- Coronavirus disease (COVID-19): Contact tracing
• How to talk about vaccines
• COVID-19: Vaccines
• COVID-19: Vaccine research and development

Videos:
• COVID-19: Omicron
• Omicron and COVID-19
• Omicron and reinfection
• Diabetes & COVID-19

For more information please feel free to contact: seinocomm@who.int
WHO Indonesia Reports