Pre- / non- ICU respiratory support options in COVID-19

June 4, 2020

Moderators for presentation: Drs. Hillary Cohen (Englewood Health/IMAI Alliance)/Bhagteshwar Singh (SEARO/University of Liverpool), Mona Shah (IMAI Alliance)

Presenters-

Dr. Srikant Kondapaneni and Dr Judy Wong- Englewood Health, New Jersey, USA

Dr. Swapna Mandal- Royal Free Hospital, London, United Kingdom

Moderators for discussion: Drs. Fabio Caldas de Mesquita (WHO Myanmar), Pushpa Ranjan Wijesinghe (SEARO), Moe Khaing (MoH Myanmar), Sandy Gove (IMAI Alliance)

Objectives

- Highlight need for options for respiratory failure management prior to/in the absence of intensive care with mechanical ventilator and skilled operator
- Summarise the options available, in terms of:
 - Guideline recommendations / Examples of use by hospitals
 - Skill/training required
 - Cost
 - Oxygen requirement
 - Risk of aerosolization
 - Other considerations

Background

- Severe and critical COVID-19 usually characterised by pneumonia -> hypoxaemia & acute respiratory distress syndrome (ARDS)¹
- Increasing reports of pulmonary embolism and possibly pulmonary microthrombi²
- Most patients have hypoxaemic, normocapnic (type
 1) respiratory failure
 - Some especially if underlying chronic respiratory disease- may develop hypercapnic (type 2) failure
- Increasingly recognition of a distinct group with severe hypoxaemia but no breathlessness or signs of respiratory distress – "happy hypoxaemic"

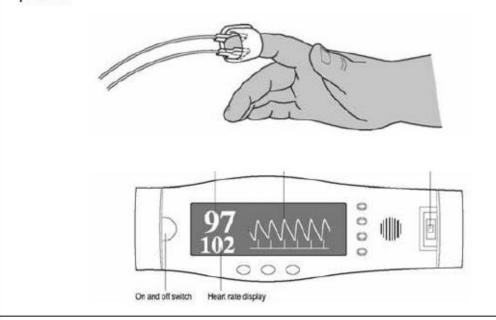
Sources

- 1. WHO May 2020; Guan NEJM Feb 2020
- 2. Ackermann NEJM May 20202; Thachil SeminThrombHemost May 2020

Presentations & Pathophysiology

When/whether to intubate

- Several guidelines/hospitals advocate early intubation if simple oxygen therapy fails, where possible 1
- Supported by drive to minimize aerosolization of virus particles
- Some concerns this may lead to high mortality possibly due to ventilator-induced lung injury²
- Some settings using trial of alternatives prior to intubation
- Capacity to intubate, invasively ventilate, monitor blood gases is not always available especially in SEAR countries
- Some core reasons to intubate remain:
 - Rising PaCO2 especially if BiPAP failed or not appropriate
 - Reduced conscious level
 - Increased work of breathing despite correction of hypoxia
 - Raised serum lactate


Sources

- 1. WHO May 2020; OTHERS
- 2. Richardson JAMA April 2020; Marini JAMA April 2020

Airway and
Breathing:
First: Use pulse
oximeter to assess
hypoxaemia and
give oxygen

USING A PULSE OXIMETER TO MONITOR SpO,

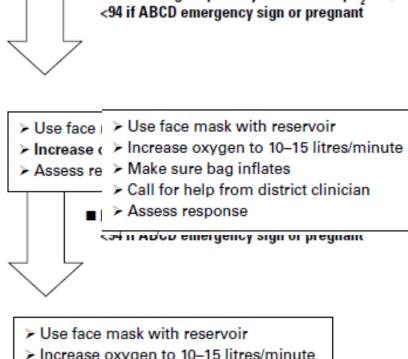
- > Turn on the pulse oximeter.
- > Attach the oximeter probe to the finger or toe.
- > Wait until there is a consistent pulse signal (this may take 20-30 seconds).
- > Record the SpO, on a monitoring chart.
- If titrating oxygen down, recheck SpO₂ within 15 minutes and record on the monitoring chart.
- If problems with the reading or inconsistent with clinical state, remove nail polish.

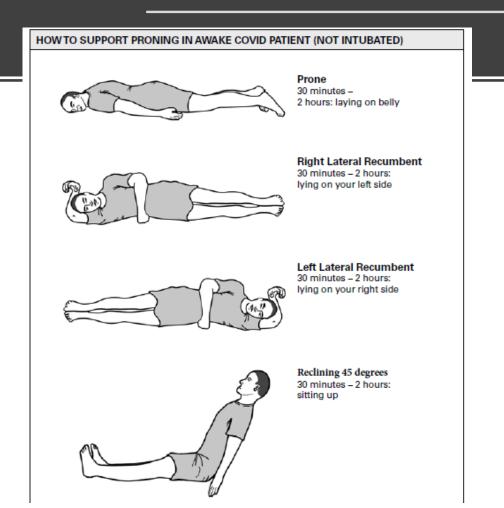
HOWTO DELIVER INCREASING OXYGEN

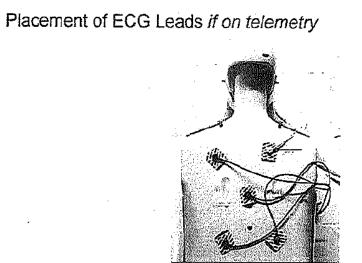

Place prongs inside the nostril. Hook tubing behind ears. Flow rates higher than 5 litres will dry mucous membranes.

- Start oxygen at 5 litres/minute (10-15) litres if critically ill [see below])
- ➤Use nasal prongs
- Assess response

■ If increasing respiratory distress or Sp0, <90;</p>


Secure mask firmly on face over nose and mouth. Pull strap over head.


- ➤ Increase oxygen to 10–15 litres/minute
- Make sure bag inflates
- > Call for help from district clinician
- Assess response



Make sure bag is full to deliver highest oxygen concentration. An empty bag is dangerous.

Proning in the awake, non-intubated patient

Englewood Health protocol

Sources for proning: Caputo N, Strayer R, and Levitan R. Early self-proning in awake, non-intubated patients in the emergency department: A single ED's experience during the COVID-19 pandemic. Academic Emergency Medicine 2020; 27:375-378; Protocol adapted from NHS- Royal Free London., UK. Englewood Health, NJ, USA. Also recommended in WHO 2018 May 2020 Interim clinical guidance for COVID-19 for clinical trials.. Illustration from draft SEARO IMAI District Clinician Manual.

High-flow nasal oxygen (HFNO)

Administration of high-flow oxygen via nasal cannula – up to 60L/min. Generates small amount of PEEP. Actively heats and humidification as part of circuit.

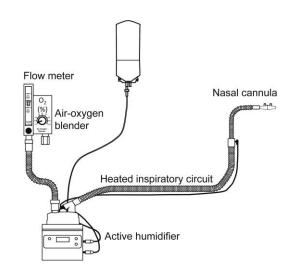
Guideline recommendations / Examples of use by hospitals:

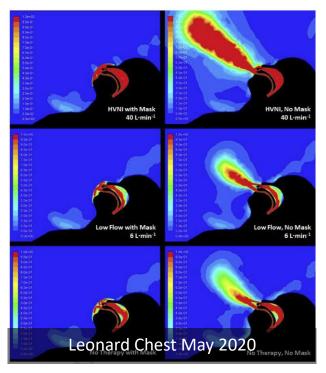
- WHO suggest trial in some patients
- Varying endorsement from organisations/hospitals: biggest concern is aerosol generation

Skill/training required:

· Usually requires specialist nursing care, but videos available online

Oxygen requirement:


High: 20-60 L/minute -> 30,000-90,000 L/day


Risk of aerosolization/aerosol dispersion:

- Variable dispersion: 17cm [similar to low-flow O2; Hui 2019] to 2m [similar to cough; Loh 2020]
- Wearing surgical mask on top may almost eliminate dispersion [Leonard 2020] opposite.
- Iwashyna [2020] found similar small (<0.5um) particles in a room after HFNO vs low-flow O2

Other considerations:

- Requires uninterrupted power supply.
- Possibly more comfortable than NIV. Enables eating, drinking, talking without interruption of therapy.

Continuous positive airway pressure (CPAP)

Helmet

Applies positive pressure throughout respiratory cycle.

Leads to splinting of smaller airways in expiration (positive end-expiratory pressure = PEEP) & recruitment of additional parts of lung.

Guideline recommendations / Examples of use by hospitals:

- WHO suggest trial in some patients. Varying endorsement from organisations/hospitals: biggest concern is aerosol generation.
- Commonly used in Italy especially with helmets. Increasingly used in UK and USA

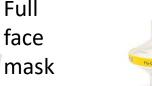
Skill/training required:

• Usually administered by specialist staff, but patients use simple versions at home independently.

Oxygen requirements:

Could start with low flow (5-10 L/minute) but may need 15-20 L/minute -> 7,000-30,000 L/day.

Risk of aerosolization/aerosol dispersion:


- Depends on delivery interface:
 - Reduced with helmet with cushion (almost nil dispersion) or non-vented full face/oronasal mask with filter
 - Nasal/oral masks and those with vents have higher dispersion.
 - Any mask disperses more when the seal is not ideal and air leak is high.

Other considerations:

- Requires uninterrupted power supply.
- Can be manufactured at low-cost: https://www.ucl.ac.uk/news/2020/apr/designs-life-saving-breathing-aid-are-made-freely-available.
- Bubble CPAP can be improvised at low cost for infants (not adults).
- Simple/home versions can be used, but may need additional attachments for oxygen, and may not adjust flow rates well.

Hose

Bi-level positive airways pressure (BiPAP) non-invasive ventilation (NIV)

Similar to CPAP, but with higher inspiratory pressure than expiratory, leading to more active ventilation of patients' lungs.

BiPAP machines can be used for CPAP: inspiratory pressure (IPAP) = expiratory (EPAP).

Can be delivered using non-invasive settings on invasive ventilators.

More evidence for its use in acute respiratory failure in systematic reviews than CPAP/HFNO – especially type 2/hypercapnic failure.

Similar to CPAP in terms of:

- WHO guidelines consider trial
- Concerns/mitigations of aerosol generation & dispersion
- Delivery interfaces: masks and helmets
- Oxygen & power requirements

May require more training than for CPAP/HFNO.

Fewer guidelines recommend this in place of or in preference to CPAP/HFNO.

In hospital without ABG or ICU with ventilator & skilled operator: Patient admitted with COVID-19 pneumonia or COVID-19 with high risk: - Assess clinical frailty; discuss patient/family wishes for invasive mechanical ventilation and agree on ceiling of care Ceiling decision: no IMV All admitted patients: - Positioning: high supported sitting; encourage proning (see QC 15) Patients on O₂ therapy Ceiling of care -titrate O₂ to target ≥94% includes IMV - If needed, escalate to highest available oxygen in your hospital- 10-15L via nonrebreather face-mask; 12-15L via 60% Venturi mask, or 6L via standard nasal cannula INCREASED RESPIRATORY DISTRESS OR SpO2 <94% DESPITE MAXIMUM **AVAILABLE OXYGEN-**patient has hypoxaemic respiratory failure (presume non-hypercapnic if no history of chronic respiratory disease e.g. COPD) - Titrate O₂ to target ≥94% - Arrange transfer to hospital with available ICU beds with Trial of HFNO, CPAP (mask, full face mask or helmet), or BiPAP mechanical ventilator & Continue positioning/proning and symptom control skilled operator Reassess after 30 min, then 1 hour If not - If delayed, use HFNO, CPAP, Follow mental status as well as SpO₂ able to helmet CPAP or BiPAP as a transfer bridge If improving, Prioritize symptom control continue; titrate measures; review other treatments down O₂ as able. (benefit vs discomfort).

Remember IPC! Considerations for aerosolization.

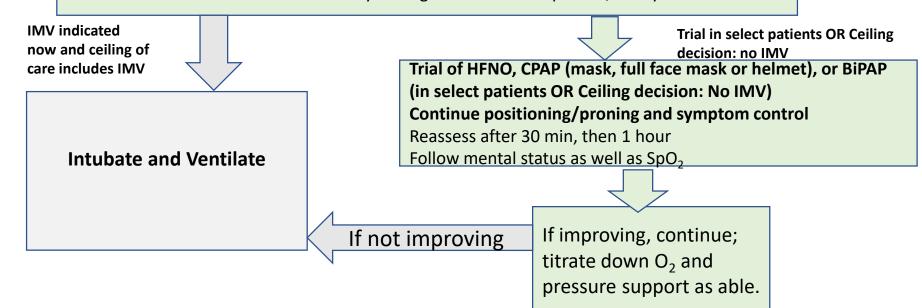
In hospital with ICU with ventilator & skilled operator:

Patient admitted with COVID-19 pneumonia or COVID-19 with high risk:

- Assess clinical frailty; discuss patient/family wishes for invasive mechanical ventilation and agree on ceiling of care

All admitted patients with severe respiratory distress:

- Positioning: high supported sitting; encourage proning (see QC 15)


Patients on O₂ therapy

Remember IPC!

- -titrate O₂ to target ≥94%
- If needed, escalate to highest available oxygen in your hospital- 10-15L via non-rebreather face-mask; 12-15L via 60% Venturi mask

INCREASED RESPIRATORY DISTRESS OR SpO2 <94% DESPITE MAXIMUM AVAILABLE OXYGEN-patient has hypoxaemic respiratory failure (presume non-hypercapnic if no history of chronic respiratory disease e.g. COPD and no ABG); Assess for ARDS.

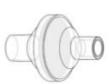
-Consider indications for advance airway management now and patient/family wishes for IMV

Experience from Englewood Health, New Jersey, USA

Project PreVent: Circuit Configuration Options Overview

[Standard 22m Respiratory Tubing & Proximal Pressure Sense Tubing, ~72"]

[Exhalation Port]


[Secondary Leak Containment Hood]

Balance imperviousness against patient comfort

Many Options: target ~3.5mm diameter orifice

Various combinations,

prefer Anti-Asphyxia

Valve

Med-Tech Resources Part No MTR-755R

Distal, toward Philips V60 (or equiv) BiPAP Machine

Proximal, toward Patient

SEE TABS BELOW FOR SPECIFIC COMPONENT MANUFACTURER, DISTRIBUTOR, & PART NUMBER INFO

Project PreVent: Circuit Option 4

Standard 7' 22mm Tubing/ Respiratory Circuit Secondary Leak Containment

Hood, Cover, Bouffant, Balaclava, Bag, etc (optional)

Philips Respironics PerforMax or FitLife Total Face Mask

(Alternatively can use Philips AFS31 Oro-nasal mask)

ReddyPort Elbow

with Reddy Port, Low-Leak (-1-2LPM)
"Anti-Asphyxiation" Valve, &
Proximal Pressure Port (also
optional Microphone & Accessories)

Viral/Bacterial Filter

(Primarily for expiration, but placed inline due to using Adapter w/O2 stem as exhalation port)

22mm Adapter with O2 Stem to serve as Alt Exhalation Port

(-4mm diameter orifice)

***IMPORTANT: ENSURE STEM
DOES NOT GET PLUGGED ***

Secondary Leak Containment Options

Exhalation Port Options Adapter w/O2 Stem, Philips 1065775 DEP, Fisher Paykel RT017, 3D Print

Proximal Pressure

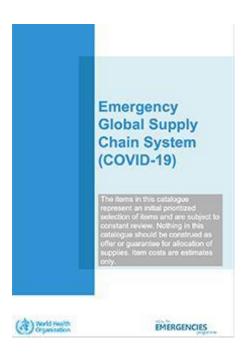
Sense Line

Cuff

Adapter

(optional)

Experience from Royal Free Hospital, London, United Kingdom


Overview of estimates for equipments and consumables

Considerations between options

- What's available: equipment, consumables
- Staff training/comfort
- Aerosolization & risk mitigation strategies available for transmission
- Cost
- Availability of oxygen
- Power supply
- Benefit vs risk/comfort assessment by clinician/patient/relative

Cost

Some estimated costs in WHO Emergency Global Supply Chain System (COVID-19) catalogue [6 May 2020]: https://www.who.int/who-documents-detail/emergency-global-supply-chain-system-(covid-19)-catalogue

Low-cost invasive & noninvasive ventilators being built in India & Sri Lanka – what about other SEAR countries eg Myanmar?

https://www.bbc.com/news/world-asia-india-

52106565#:~:text=The%20invasive%20ven tilator%20being%20developed,cost%2050 %2C000%20rupees%20(%24662).

Coronavirus: India's race to build a low-cost ventilator to save Covid-19 patients

Cost

Approximate costs obtained from suppliers in India (thanks to CMC Vellore ID & Purchase Depts). All are:

- Inclusive of local Indian taxes only (no import tax)
- In USD as of today's exchange rate
- Exclusive of delivery

Treatment modality	Machine	Consumables
HFNO	\$4,000	Nasal cannula with hose/tubing: \$60
CPAP, with O2 connection & flow meter	\$1,500-3,000	Hose/tubing: \$15-20 Oronasal mask: \$30-60
BIPAP, with O2 connection & flow meter	\$2,500-5,000	Full face mask: \$120 Helmet: \$200 Filter: \$5
Invasive ventilator	\$15,000-30,000	Hose/tubing: \$30-40 Endotracheal tube: \$1-5

THANK YOU! Questions/Discussion