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Preface 

 
One of the primary goals of WHO and its member states is that “all people, whatever 
their stage of development and their social and economic conditions, have the right to 
have access to an adequate supply of safe drinking water.” A major WHO function to 
achieve such goals is the responsibility “to propose ... regulations, and to make 
recommendations with respect to international health matters ....” 
 
The first WHO document dealing specifically with public drinking-water quality was 
published in 1958 as International Standards for Drinking-water. It was subsequently 
revised in 1963 and in 1971 under the same title. In 1984–1985, the first edition of the 
WHO Guidelines for Drinking-water Quality (GDWQ) was published in three 
volumes: Volume 1, Recommendations; Volume 2, Health criteria and other 
supporting information; and Volume 3, Surveillance and control of community 
supplies. Second editions of these volumes were published in 1993, 1996 and 1997, 
respectively. Addenda to Volumes 1 and 2 of the second edition were published in 
1998, addressing selected chemicals. An addendum on microbiological aspects 
reviewing selected microorganisms was published in 2002. 
 
The GDWQ are subject to a rolling revision process. Through this process, microbial, 
chemical and radiological aspects of drinking-water are subject to periodic review, 
and documentation related to aspects of protection and control of public drinking-
water quality is accordingly prepared/updated. 
 
Since the first edition of the GDWQ, WHO has published information on health 
criteria and other supporting information to the GDWQ, describing the approaches 
used in deriving guideline values and presenting critical reviews and evaluations of 
the effects on human health of the substances or contaminants examined in drinking-
water.  
 
For each chemical contaminant or substance considered, a lead institution prepared a 
health criteria document evaluating the risks for human health from exposure to the 
particular chemical in drinking-water. Institutions from Canada, Denmark, Finland, 
France, Germany, Italy, Japan, Netherlands, Norway, Poland, Sweden, United 
Kingdom and United States of America prepared the requested health criteria 
documents. 
 
Under the responsibility of the coordinators for a group of chemicals considered in the 
guidelines, the draft health criteria documents were submitted to a number of 
scientific institutions and selected experts for peer review. Comments were taken into 
consideration by the coordinators and authors before the documents were submitted 
for final evaluation by the experts meetings. A “final task force” meeting reviewed the 
health risk assessments and public and peer review comments and, where appropriate, 
decided upon guideline values. During preparation of the third edition of the GDWQ, 
it was decided to include a public review via the world wide web in the process of 
development of the health criteria documents. 
 



  

During the preparation of health criteria documents and at experts meetings, careful 
consideration was given to information available in previous risk assessments carried 
out by the International Programme on Chemical Safety, in its Environmental Health 
Criteria monographs and Concise International Chemical Assessment Documents, the 
International Agency for Research on Cancer, the joint FAO/WHO Meetings on 
Pesticide Residues and the joint FAO/WHO Expert Committee on Food Additives 
(which evaluates contaminants such as lead, cadmium, nitrate and nitrite, in addition 
to food additives).  
 
Further up-to-date information on the GDWQ and the process of their development is 
available on the WHO internet site and in the current edition of the GDWQ. 
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1. GENERAL DESCRIPTION 
 
1.1 Identity 
 

CAS No.: 76-03-9 
Molecular formula: Cl3CCOOH 

 
The IUPAC name for trichloroacetic acid is trichloroethanoic acid. 
 
1.2 Physicochemical properties1(Verschueren, 1977; Weast, 1988; Budavari et al., 
1989; HSDB, 2001)  
 

Property Value 
Boiling point (°C) 197.5 
Melting point (°C) 58.0 
Density (g/cm3) 1.62 at 25 °C 
Vapour pressure (kPa) 0.02 at 25 °C 

0.133 at 51 °C 
pKa at 25 °C 0.512–0.70 
Water solubility (g/litre) 13  
Log octanol–water partition coefficient 1.33–1.7 

 
1.3 Organoleptic properties 
 
No information is available on the taste or odour threshold of trichloroacetic acid in 
water. 
 
1.4 Major uses 
 
Trichloroacetic acid is used as a soil sterilizer and a laboratory intermediate or reagent 
in the synthesis of a variety of medicinal products and organic chemicals. Medical 
uses of trichloroacetic acid include application as an antiseptic and a peeling agent. 
Trichloroacetic acid is also used industrially as an etching and pickling agent for the 
surface treatment of metals and as a solvent in the plastics industry (Verschueren, 
1977; Hawley, 1981; Budavari et al., 1989; Meister, 1989; HSDB, 2001). 
 
2. ANALYTICAL METHODS 
 
The chloroacetic acids can be detected in water by EPA Method 552.1, EPA Method 
552.2 or Standard Method 6251B (APHA et al., 1998). In EPA Method 552.1, the 
haloacetic acids are extracted on a miniature anion exchange column and converted to 
methyl esters in the eluant prior to analysis. EPA Method 552.2 involves a liquid–
liquid extraction procedure, after which the acetic acids are converted to methyl esters 
(US EPA, 1995). Both EPA methods use gas chromatography and electron capture 
detection. Standard Method 6251B uses a micro liquid–liquid extraction procedure 

                                             
1 Conversion factor in air: 1 ppm = 6.68 mg/m3. 
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combined with gas chromatography and electron capture detection. Method detection 
limits range from <0.1 to 0.4 µg/litre The practical quantification level for 
trichloroacetic acid is approximately 1 µg/litre (P. Fair, personal communication, 
2002). 
 
3. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE 
 
3.1 Air 
 
Trichloroacetic acid can be formed as a combustion by-product of organic compounds 
in the presence of chlorine (Juuti & Hoekstra, 1998). Stack gases of municipal waste 
incinerators have been reported to contain trichloroacetic acid at concentrations in the 
range 0.37–3.7 µg/m3 (Mower & Nordin, 1987). Trichloroacetic acid could be a 
photooxidation product of tetrachloroethylene and 1,1,1-trichloroethane in the 
atmosphere (Reimann et al., 1996; Sidebottom & Franklin, 1996; Juuti & Hoekstra, 
1998). However, Sidebottom & Franklin (1996) suggested that atmospheric 
degradation of chlorinated solvents contributes only a minor amount of trichloroacetic 
acid to the atmosphere, based on mechanistic and kinetic evidence as well as the 
observed global distribution of trichloroacetic acid in precipitation. 
 
The US National Air Toxics Information Clearinghouse reported that the annual, 8-h 
and 24-h time-weighted average ambient air concentrations of trichloroacetic acid in 
the USA were 7, 73.24 and 58.14 µg/m3, respectively, when averaged across seven 
representative states (NATICH, 1993). 
  
Reimann et al. (1996) reported that levels of trichloroacetic acid in rainwater ranged 
from 0.01 to 1 µg/litre. It can be assumed that the chlorinated acetic acids detected in 
rainwater are from the atmosphere. Rainwater in Germany contained 0.1–20 µg of 
trichloroacetic acid per litre (IARC, 1995). Sidebottom & Franklin (1996) reported 
that trichloroacetic acid concentrations in rainwater in remote areas (Antarctic, Arctic 
and sub-Arctic regions) generally ranged from 10 to 100 ng/litre. 
 
3.2 Water 
 
Chlorinated acetic acids are formed from organic material during water chlorination 
(Coleman et al., 1980; IPCS, 2000). Concentrations of trichloroacetic acid measured 
in various water sources have been summarized by IARC (1995): in Japan, 
chlorinated drinking-water contained 7.5 µg of trichloroacetic acid per litre; in 
Germany, groundwater contained 0.05 µg of trichloroacetic acid per litre; in Australia, 
a maximum concentration of 200 µg/litre was found for trichloroacetic acid in 
chlorinated water; and chlorinated water in Switzerland contained 3.0 µg of 
trichloroacetic acid per litre. 
  
Data for drinking-water supplies in the USA (US EPA, 2001, 2002a) indicate that 
trichloroacetic acid was detected in groundwater and surface water distribution 
systems at mean concentrations of 5.3 and 16 µg/litre, respectively; detected 



TRICHLOROACETIC ACID IN DRINKING-WATER 
 

 3 
 

concentrations range from <1.0 to 174 µg/litre in surface water distribution systems 
and from <1.0 to 80 µg/litre in groundwater systems (US EPA, 2001, 2002a). 
  
Trichloroacetic acid has also been detected in swimming pool water. In a German 
study of 15 indoor and 3 outdoor swimming pools (Clemens & Scholer, 1992), 
trichloroacetic acid concentrations averaged 6.2 µg/litre and 94.1 µg/litre in indoor 
and outdoor pools, respectively. By contrast, the highest concentration of 
trichloroacetic acid measured in an outdoor pool was 871 µg/litre, with a mean 
concentration of 420 µg/litre (Kim & Weisel, 1998). The difference between this 
study and the lower levels reported in the German study may have been due to 
differences in the amounts of chlorine used to disinfect swimming pools, sample 
collection time relative to chlorination of the water or addition or exchanges of water 
in the pools. 
 
3.3 Food 
 
As chlorine is used in food production and processing — including disinfection of 
chicken in poultry plants; processing seafood, poultry and red meats; sanitizing 
equipment and containers; cooling heat-sterilized foods; and oxidizing and bleaching 
in the flour industry (US EPA, 1994) — trichloroacetic acid is likely to be found as a 
disinfection by-product in meat and other food products (US EPA, 2002a). 
Trichloroacetic acid can also be taken up from cooking water (Raymer et al., 2001). 
In addition, there is evidence that trichloroacetic acid may be taken up by plants via 
the roots or by leaves via uptake from the air (Schroll et al., 1994; Sutinen et al., 
1995). 
  
Reimann et al. (1996) examined the concentrations of trichloroacetic acid and other 
chlorinated acetic acids in a limited number of samples from several vegetables, 
fruits, grains and beer. Trichloroacetic acid concentrations ranged from <0.2 to 5.9 
µg/kg in vegetables and from <1.6 to 4.1 µg/kg in grains. Trichloroacetic acid was 
below the detection limit of 1.5 µg/kg in breads and 0.6 µg/kg in wheat flours. It was 
not detected in fruits or tomatoes. 
 
3.4 Estimated total exposure and relative contribution of drinking-water 
 
Although the available data for trichloroacetic acid are sufficient to demonstrate that 
food and air are relevant exposure sources in addition to drinking-water, the data are 
not adequate to quantify the contributions of each source for an overall assessment of 
exposure.  
 
4. KINETICS AND METABOLISM IN LABORATORY ANIMALS AND 

HUMANS 
 
Trichloroacetic acid is rapidly absorbed from the gastrointestinal tract in rats (Schultz 
et al., 1999) and by both the dermal and oral routes in humans (Kim & Weisel, 1998). 
Following oral and intravenous administration in rats, trichloroacetic acid appears to 
bind significantly to plasma proteins (Templin et al., 1993; Schultz et al., 1999; Yu et 
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al., 2000) and also distributes to the liver. A relatively small proportion of 
trichloroacetic acid is metabolized in the liver. The formation of carbon dioxide, 
glyoxylic acid, oxalic acid, glycolic acid and dichloroacetic acid was observed in rats 
and mice following oral administration of 20 or 200 mg of radiolabelled 
trichloroacetic acid per kg of body weight. The authors suggested that trichloroacetic 
acid was metabolized by reductive dehalogenation to dichloroacetic acid (Larson & 
Bull, 1992). Further reductive dehalogenation of dichloroacetic acid to 
monochloroacetic acid and ultimately to thiodiglycolate has been proposed as a 
metabolic pathway (Bull, 2000).  
 
Other investigators have suggested that metabolism to dichloroacetic acid may have 
been over-reported in earlier studies due to analytical artefacts (Lash et al., 2000). In 
F344 rats given intravenous injections of radiolabelled trichloroacetic acid at doses of 
0, 6.1, 61 or 300 µmol/kg of body weight (approximately 0, 1, 10 or 50 mg/kg of 
body weight), as much as 84% of the administered radioactivity was excreted in the 
urine within 24 h of dosing; high-performance liquid chromatographic analyses of 
plasma, urine and liver homogenate did not detect any oxalate, glyoxalate, glycolate 
or dichloroacetic acid, suggesting that trichloroacetic acid was poorly metabolized by 
the rats (Yu et al., 2000).  
 
The primary route of excretion is via the urine (Templin et al., 1993; Schultz et al., 
1999; Yu et al., 2000). Approximately 40% of the clearance of trichloroacetic acid 
from blood following a single intravenous dose of 500 µmol/kg of body weight 
(approximately 80 mg/kg of body weight) to male F344 rats was accounted for by 
renal clearance; excretion in faeces was negligible (Schultz et al., 1999). In light of 
the minimal metabolism observed, the authors suggested that the remaining 54% of 
the trichloroacetic acid dose was removed from blood primarily by tissue 
sequestration. In rats exposed to 82 mg/kg of body weight via the intravenous route, 
the elimination half-life of trichloroacetic acid was 8 h (Schultz et al., 1999). Some 
limited data on comparative excretion rates in rats and humans are available, based on 
a study of the inhalation of tetrachloroethylene, which is metabolized to 
trichloroacetic acid (Volkel et al., 1998). The mean elimination half-life of 
trichloroacetic acid in urine was 45.6 h in humans, compared with 11.0 h in rats, 
suggesting that elimination of trichloroacetic acid in rats is more rapid. It is possible, 
however, that the observed differences may be due to differences in 
tetrachloroethylene metabolism. 
 
5. EFFECTS ON LABORATORY ANIMALS AND IN VITRO TEST SYSTEMS 
 
5.1 Acute exposure 
 
Oral LD50s of 3320 and 4970 mg/kg of body weight for trichloroacetic acid have been 
reported in rats and mice, respectively (Woodard et al., 1941). Dosed animals quickly 
passed into a state of narcosis or semi-narcosis and, within 36 h, either recovered 
completely or died in the narcotic state. 
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5.2 Short-term exposure 
 
Groups of male B6C3F1 mice were given 0, 0.1, 0.5 or 2.0 g of trichloroacetic acid 
per litre in drinking-water (0, 25, 125 or 500 mg/kg of body weight per day) for 3 or 
10 weeks and evaluated for oxidative DNA damage in the liver. After 3 weeks, liver 
weight was increased in the two highest dose groups, accompanied by increased 12-
hydroxylation of lauric acid. After 10 weeks, effects included increased absolute and 
relative liver weights in the two highest dose groups, a dose-related increase in 
cyanide-insensitive palmitoyl-coenzyme A (CoA) oxidase activity, increased 12-
hydroxylation of lauric acid and increased peroxisome proliferation. Based on these 
liver effects, the NOAEL was 25 mg/kg of body weight per day (Parrish et al., 1996). 
 
Groups of male Sprague-Dawley rats were exposed to trichloroacetate in drinking-
water at a concentration of 5 g/litre (about 312 mg/kg of body weight per day) for 10, 
20 or 30 days. No treatment-related changes in body weight, organ weights, gross 
necropsy or histopathology were found. The NOAEL for this study was 312 mg/kg of 
body weight per day (Parnell et al., 1988). 
  
Six male F344 rats and eight male B6C3F1 mice were given trichloroacetic acid by 
gavage at 500 mg/kg of body weight per day for 10 days. In both species, relative 
liver weights and cyanide-insensitive palmitoyl-CoA oxidation were increased. There 
was no effect on relative kidney weights. The LOAEL for liver effects in this study 
was 500 mg/kg of body weight per day for both rats and mice (Goldsworthy & Popp, 
1987). 
  
Male Sprague-Dawley rats (10 per dose) received trichloroacetic acid in drinking-
water at 0, 0.05, 0.5 or 5.0 g/litre (0, 4.1, 36.5 or 355 mg/kg of body weight per day) 
for 90 days. At the two highest dose levels, decreased absolute spleen weight and 
increased relative liver and kidney weights were observed. At the highest dose, there 
was focal hepatocellular enlargement, intracellular hepatic swelling, hepatic glycogen 
accumulation and increased hepatic peroxisomal β-oxidation activity. The NOAEL 
for this study was 36.5 mg/kg body weight per day (Mather et al., 1990). 
  
Male B6C3F1 mice were given trichloroacetic acid in their drinking-water at 0, 0.3, 
1.0 or 2.0 g/litre (0, 75, 250 or 500 mg/kg of body weight per day, based on strain-
specific default values for water intake and body weight) for 14 days. A dose-related 
increase in liver weight was observed, beginning at 0.3 mg/litre and becoming 
statistically significant at 1.0 g/litre. Based on these effects, the NOAEL was 75 
mg/kg of body weight per day (Sanchez & Bull, 1990). 
 
Male Wistar rats (5–6 per dose) were given water containing 0 or 0.025 g of 
trichloroacetic acid per litre (0 or 3.8 mg/kg of body weight per day) for 10 weeks. 
Effects included decreased body weight, changes in serum markers of lipid and 
carbohydrate metabolism (increased succinate dehydrogenase activity, increased 
glycogen accumulation and decreased liver triglyceride and cholesterol levels) and 
decreased kidney glutathione levels. No changes in relative liver weight, serum liver 
enzyme activity or liver glutathione levels were observed (Acharya et al., 1995). In a 
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follow-up study using the same experimental protocol and dose level, mild liver and 
kidney histopathology were noted (Acharya et al., 1997). Based on these effects, the 
single dose tested, 3.8 mg/kg of body weight per day, was a minimal LOAEL 
(Acharya et al., 1995, 1997). 
 
5.3 Long-term exposure 
 
Decreased body weight and increased relative liver weights were associated with 
administration of trichloroacetic acid to female B6C3F1 mice in drinking-water at 
concentrations of 0, 0.33, 1.1 or 3.3 g/litre (0, 78, 262 or 784 mg/kg of body weight 
per day, based on US EPA [1988] conventions for drinking-water intake and body 
weight for B6C3F1 mice) for 51 or 82 weeks. Based on significantly increased relative 
liver weights at 262 mg/kg of body weight per day and above, the NOAEL for this 
study is 78 mg/kg of body weight per day (Pereira, 1996).  
 
Groups of male F344 rats were given trichloroacetate in drinking-water at 0, 0.05, 0.5 
or 5.0 g/litre (0, 3.6, 32.5 or 364 mg/kg of body weight per day) for 2 years. At 364 
mg/kg of body weight per day, effects observed included decreased body weight, 
decreased absolute (but not relative) liver weight, increased serum alanine 
aminotransferase activity, increased cyanide-insensitive palmitoyl-CoA oxidase 
activity and increased severity of hepatic necrosis. No changes in kidney, spleen or 
testis weights were observed. There was no evidence of increased hepatocellular 
proliferation, as measured by radiolabelled thymidine incorporation rates. At 32.5 
mg/kg of body weight per day, a significant decrease in serum aspartate 
aminotransferase activity was observed. This effect was not considered by the authors 
to be adverse. Based on non-neoplastic effects, the NOAEL for this study was 32.5 
mg/kg of body weight per day (DeAngelo et al., 1997). 
 
5.4 Reproductive and developmental toxicity 
 
Groups of pregnant Long-Evans rats were given trichloroacetic acid by gavage at 
doses of 0, 330, 800, 1200 or 1800 mg/kg of body weight per day on gestation days 
6–15. At 800 mg/kg of body weight per day and higher, effects included decreased 
maternal body weight gain, dose-related increases in maternal spleen and kidney (but 
not liver) weights and increased resorptions. At 330 mg/kg of body weight per day 
and higher, fetal weight and length were significantly reduced, and an increase in the 
incidence of soft tissue malformations, primarily involving the cardiovascular and 
renal systems, was observed. Skeletal malformations of the orbit and hydronephrosis 
were also noted. The maternal LOAEL was 330 mg/kg of body weight per day, based 
on decreased body weight gain. The developmental LOAEL was 330 mg/kg of body 
weight per day, based on teratogenic and fetal growth effects; no developmental 
NOAEL was identified (Smith et al., 1989). 
  
Pregnant Sprague-Dawley rats were given trichloroacetic acid in drinking-water at 
concentrations of 0 or 2.73 g/litre (0 or 290 mg/kg of body weight per day) on 
gestation days 1–22. A significant decrease in body weight gain was observed in 
treated dams relative to controls. Reproductive effects included increased resorptions 
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and increased cardiac soft tissue malformations. Based on decreased maternal weight 
gain, the LOAEL for maternal toxicity is the only dose tested, 290 mg/kg of body 
weight per day, which is also a LOAEL for reproductive and developmental toxicity 
(Johnson et al., 1998). 
 
Trichloroacetic acid was not observed to exhibit teratogenic potential in a non-
mammalian developmental toxicity screening assay with Hydra attenuata (Fu et al., 
1990).  
 
5.5 Mutagenicity and related end-points 
 
Trichloroacetic acid was not mutagenic in Salmonella typhimurium strain TA100 
without metabolic activation (Rapson et al., 1980), but it gave positive results in three 
in vivo chromosomal aberration assays in mice: the bone marrow assay, the 
micronucleus test and the sperm head abnormality assay (Bhunya & Behera, 1987); 
the results were time- and route-dependent (oral gavage or intraperitoneal injection) 
but did not demonstrate a dose–response. In modified Ames S. typhimurium assays, 
mixed results have been reported (DeMarini et al., 1994; Giller et al., 1997). In the 
SOS chromotest (an inducible error-prone repair system), trichloroacetic acid did not 
show evidence of genotoxicity with or without metabolic activation (Giller et al., 
1997). Trichloroacetic acid showed weakly positive mutagenic activity in a mouse 
lymphoma cell assay and was considered to be one of the least potent mutagens 
among a range of chemical compounds evaluated in this test system (Harrington-
Brock et al., 1998). Mixed results were observed in DNA strand break tests (Nelson & 
Bull, 1988; Chang et al., 1991), and no chromosomal damage was noted in cultured 
human peripheral lymphocytes (Mackay et al., 1995). Recent evidence suggests that 
trichloroacetic acid-induced clastogenicity is secondary to pH changes and not a 
direct effect of trichloroacetic acid exposure (Mackay et al., 1995).  
 
Although the data are somewhat conflicting, the weight of evidence suggests that 
trichloroacetic acid has neither significant mutagenic potential nor any structural 
alerts for mutagenicity. This conclusion is supported by the results from 
carcinogenicity bioassays in two species (negative in rats, liver tumours only in mice), 
discussed in the next section. 
 
5.6 Carcinogenicity 
 
Male B6C3F1 mice received trichloroacetic acid in drinking-water at concentrations 
of 0, 1.0 or 2.0 g/litre (approximately 0, 178 or 319 mg/kg of body weight per day, 
based on the study authors’ calculations) for 37 or 52 weeks. An increase in the 
incidence of hepatocellular carcinomas was seen in males in both dose groups. No 
increases in tumours were noted in females in either dose group (Bull et al., 1990). 
 
Male B6C3F1 mice (50 per dose group) received 0, 0.05, 0.5 or 5 g of trichloroacetic 
acid per litre (0, 8, 71 or 595 mg/kg of body weight per day) in drinking-water for 60 
weeks. At the two highest doses, a significant increase in the incidences of combined 
hepatocellular tumours (adenomas and carcinomas) was observed relative to controls 
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(37.9% and 55.2% in mice receiving 71 and 595 mg/kg of body weight per day, 
respectively, compared with 13.3% in controls) (US EPA, 1991). In a second 
experiment, a significantly increased incidence of combined hepatocellular 
adenomas/carcinomas was also observed in male and female B6C3F1 mice (50 males 
and 55 females) given 4.5 g of trichloroacetic acid per litre (583 mg/kg of body 
weight per day) in drinking-water for 94 weeks (US EPA, 1991).  
 
No evidence of carcinogenicity was observed in groups of male F344 rats (50 per 
dose group) administered trichloroacetic acid in their drinking-water at concentrations 
of 0, 0.05, 0.5 or 5.0 g/litre (0, 3.6, 32.5 or 364 mg/kg of body weight per day) for 104 
weeks (DeAngelo et al., 1997). 
 
Female B6C3F1 mice were given trichloroacetate in drinking-water at concentrations 
of 0, 0.3, 1.1 or 3.3 g/litre (approximately 0, 78, 262 or 784 mg/kg of body weight per 
day) for 51 or 82 weeks. After 51 weeks at 784 mg/kg of body weight per day, 25% of 
animals had liver carcinomas, compared with none in the other groups. After 82 
weeks, mice in this group exhibited significantly increased incidences of altered 
hepatocellular foci, adenomas and carcinomas. After 82 weeks at 262 mg/kg of body 
weight, significant increases in altered foci and carcinomas were also observed. 
Staining showed that these lesions were predominantly basophilic or mixed 
basophilic/eosinophilic, lacked expression of glutathione-S-transferase-pi and were 
consistent with peroxisome proliferation involvement in tumorigenesis (Pereira, 
1996). 
 
No treatment-related effects on the mutation patterns of the K- and H-ras proto-
oncogenes were observed in trichloroacetic acid-induced liver tumours in male 
B6C3F1 mice, suggesting to the authors that trichloroacetic acid is a tumour promoter, 
not a tumour initiator (Ferreira-Gonzalez et al., 1995). 
  
In a number of recent mechanistic studies, trichloroacetic acid promoted liver tumours 
in mice pretreated with N-methyl-N-nitrosourea, a tumour-initiating agent (Pereira & 
Phelps, 1996; Tao et al., 1996; Latendresse & Pereira, 1997).  
 
6. EFFECTS ON HUMANS 
 
Trichloroacetic acid has been used clinically in chemical skin-peeling treatments for 
years, at concentrations of 16.9–50%. This procedure results in a slight erythema and 
swelling for the first few days post-operatively and is followed by exfoliation of dead 
skin. Histologically, trichloroacetic acid-induced skin damage is characterized by 
epidermal loss, early inflammatory response and collagen degeneration (Moy et al., 
1996; Tse et al., 1996). Marked erythema and tenderness in the vulvar vestibule area, 
lasting for 2–15 weeks, have been reported in two cases in which trichloroacetic acid 
was used for the topical treatment of genital warts (Nunns & Mandal, 1996).  
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7. GUIDELINE VALUE 
 
Trichloroacetic acid has been shown to induce tumours in the liver of mice. It has 
given mixed results in in vitro assays for mutations and chromosomal aberrations and 
has been reported to cause chromosomal aberrations in in vivo studies. IARC (2002) 
has classified trichloroacetic acid in Group 3, not classifiable as to its carcinogenicity 
to humans. US EPA (1994) classified trichloroacetic acid as C, possible human 
carcinogen, in accordance with the 1986 EPA Guidelines for Carcinogen Risk 
Assessment (US EPA, 1986). Under the 1999 US EPA Draft Guidelines for 
Carcinogen Risk Assessment (US EPA, 1999), there is suggestive evidence of 
trichloroacetic acid carcinogenicity, but the data are not sufficient to assess human 
carcinogenicity (US EPA, 2002a). 
 
The weight of evidence indicates that trichloroacetic acid is not a genotoxic 
carcinogen. A TDI of 32.5 µg/kg of body weight was calculated, based on a NOAEL 
of 32.5 mg/kg of body weight per day from a study in which decreased body weight, 
increased liver serum enzyme activity and liver histopathology were seen in rats 
exposed to trichloroacetate in drinking-water for 2 years (DeAngelo et al., 1997), and 
incorporating an uncertainty factor of 1000 (100 for intra- and interspecies variation 
and 10 for database deficiencies, including the absence of a multigeneration 
reproductive study, the lack of a developmental study in a second species and the 
absence of full histopathological data in a second species). 
  
On the basis of the TDI of 32.5 µg/kg of body weight per day, and assuming a 60-kg 
body weight, drinking-water consumption of 2 litres/day and an allocation of 20% of 
the TDI to drinking-water, a guideline value of 200 µg/litre (rounded figure) can be 
calculated for trichloroacetic acid. This guideline value is achievable using commonly 
available analytical methods. 
 
It is noted that this guideline value is the same as would have been calculated from the 
TDI established by IPCS (2000), based on the Pereira (1996) study. The DeAngelo et 
al. (1997) study used to establish the guideline value has better dose definition, 
evaluated more non-cancer end-points and conducted a full histopathological 
examination of tissues. 
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