GUIDELINES FOR DRINKING-WATER QUALITY: FOURTH EDITION INCORPORATING THE FIRST AND SECOND ADDENDA

has a low acute toxicity. In short-term toxicity studies in rats, impairment of glutathione transferase activity and reduced glutathione concentrations were observed. In in vitro tests, styrene has been shown to be mutagenic in the presence of metabolic activation only. In in vitro as well as in vivo studies, chromosomal aberrations have been observed, mostly at high doses of styrene. The reactive intermediate styrene-7,8-oxide is a direct-acting mutagen. In long-term studies, orally administered styrene increased the incidence of lung tumours in mice at high dose levels but had no carcinogenic effect in rats. Styrene-7,8-oxide was carcinogenic in rats after oral administration. IARC has classified styrene in Group 2B (possibly carcinogenic to humans). The available data suggest that the carcinogenicity of styrene is due to overloading of the detoxification mechanism for styrene-7,8-oxide (e.g. glutathione depletion).

Sulfate

Sulfates occur naturally in numerous minerals and are used commercially, principally in the chemical industry. They are discharged into water in industrial wastes and through atmospheric deposition; however, the highest levels usually occur in groundwater and are from natural sources. In general, the average daily intake of sulfate from drinking-water, air and food is approximately 500 mg, food being the major source. However, in areas with drinking-water supplies containing high levels of sulfate, drinking-water may constitute the principal source of intake.

Reason for not establishing a guideline value	Not of health concern at levels found in drinking-water
Additional comments	May affect acceptability of drinking-water
Assessment date	2003
Principal reference	WHO (2004) Sulfate in drinking-water

The existing data do not identify a level of sulfate in drinking-water that is likely to cause adverse human health effects. The data from a liquid diet study with piglets and from tap water studies with human volunteers indicate a laxative effect at concentrations of 1000–1200 mg/l, but no increase in diarrhoea, dehydration or weight loss.

No health-based guideline is proposed for sulfate. However, because of the gastro-intestinal effects resulting from ingestion of drinking-water containing high sulfate levels, it is recommended that health authorities be notified of sources of drinking-water that contain sulfate concentrations in excess of 500 mg/l. The presence of sulfate in drinking-water may also cause noticeable taste (see chapter 10) and may contribute to the corrosion of distribution systems.

2,4,5-T

The half-lives for degradation of chlorophenoxy herbicides, including 2,4,5-T (CAS No. 93-76-5), also known as 2,4,5-trichlorophenoxyacetic acid, in the environment are in the order of several days. Chlorophenoxy herbicides are not often found in food.