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Glossary 
 

 

Term Explanation 

All-causes mortality (ACM)   The total deaths (across all causes-of-
death) that have occurred in a specified 
location within a specified period of time 
e.g. week, month, or year. For country 𝑐 
and time period 𝑡, represented by 𝑌𝑐,𝑡 

COVID-19 Coronavirus disease (COVID-19) is an 
infectious disease caused by the SARS-
CoV-2 virus. 

Expected deaths The hypothetical or “counterfactual” total 
death numbers which for country 𝑐 and 
time period 𝑡 are represented by 𝐸𝑐,𝑡 and 

are forecasted using historic (prior to the 
pandemic) deaths data. 

Excess deaths Defined as the difference in death 
numbers when comparing pandemic 
ACM, 𝑌𝑐,𝑡, to the expected, 𝐸𝑐,𝑡, which for 

country 𝑐 and time period 𝑡, are 
calculated as: 

𝛿𝑐,𝑡 = 𝑌𝑐,𝑡 − 𝐸𝑐,𝑡 

Negative excess deaths When the pandemic ACM for country 𝑐 
over period 𝑡 is lower than the expected 
this leads to a mortality deficit or 
“negative” excess i.e., 

𝛿𝑐,𝑡 = 𝑌𝑐,𝑡 − 𝐸𝑐,𝑡 < 0 

Generally, when and where this occurs it 
is due to declines in death numbers for 
certain causes during the pandemic 
period e.g., lower than expected traffic 
related mortality. However it can be an 
artifact of the model assumptions e.g., 
overestimate of expected or 
underestimate of ACM. 
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1 Introduction 

 
The World Health Organisation (WHO) has been tracking the impact of COVID-19 

throughout the course of the pandemic. Although data on the number of cases and 

deaths are being reported to WHO and made publicly available at 

https://covid19.who.int/, these figures do not offer a comprehensive picture of the 

health burden attributable to COVID-19, or the total number of lives lost as a result of 

the pandemic. Some deaths attributable to COVID-19 may not have been officially 

certified as such, as testing may not have been conducted before the individual’s passing. 

In addition, countries have varied in their application of death certification protocols 

related to COVID-19 (Riffe and Acosta, 2021). 

 

The impact of the pandemic have extended far beyond the number of deaths directly 

caused by COVID-19. On one hand, the conditions that arose during the pandemic, such 

as  overwhelmed health systems or patients avoiding healthcare, have led to additional 

deaths. On the other hand, in countries where COVID-19 spread was limited due to 

lockdown measures and other non-pharmaceutical interventions, there have been 

decreases in potential causes of death, such as those attributable to air pollution, traffic 

accidents, or other communicable diseases like influenza, which have resulted in negative 

excess or deficit deaths (Kung et al., 2020; Karlinsky and Kobak, 2021). 

 

In light of the challenges posed by using reported COVID-19 data, excess mortality is 

considered a more objective and comparable measure of the mortality impact of COVID-

19 across countries (Leon et al., 2020). The WHO defines excess mortality as, “the 

mortality above what would be expected based on the non-crisis mortality rate in the 

population of interest” (Checchi and Roberts, 2005). Understanding excess mortality not 

only provides a more comprehensive view of the pandemic’s impact, but can also help in 

the development and implementation of effective public health initiatives. 

 

The all-cause mortality (ACM) counts in a given country 𝑐 and month 𝑡 during 2020 and 

2021 are represented as 𝑌𝑐,𝑡. These counts, in addition to the contribution from expected 

deaths, are assumed to be a result of the direct effects of COVID-19 (i.e., deaths 

attributable to it) and the indirect knock-on effects on health systems and society, along 

with deaths that were averted. Using a monthly time scale provides sufficient temporal 

resolution for most public health purposes. The hypothetical or “counterfactual” no-

COVID-19 scenario is represented as the expected death numbers 𝐸𝑐,𝑡 forecasted to the 

same month 𝑡, using historic deaths data prior to the pandemic.  

 

 

https://covid19.who.int/
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Excess deaths are defined as: 

𝛿𝑐,𝑡 = 𝑌𝑐,𝑡 − 𝐸𝑐,𝑡   (1) 

for country 𝑐 where 𝑐 =  1, . . . , 194, and in month 𝑡 where 𝑡 =  1, . . . , 24 represent months 

in 2020 and 2021. 

 

Estimating excess deaths for all countries is a challenging task, as the required ACM 

counts 𝑌𝑐,𝑡 are currently unavailable for many country/month combinations. Routine 

mortality data is typically reported to the WHO a year or more after the year of death. 

Furthermore, differences in reporting capacities and data quality across countries mean 

that many nations lack the infrastructure to provide reliable routine data even historically 

(Mikkelsen et al., 2015; Adair and Lopez, 2018; GBD, 2020; UNSD, 2021; Karlinsky, 

2021). As a result, these countries were unable to monitor ACM during the 

unprecedented COVID-19 pandemic, making it difficult to contribute to the centralized 

systematic mortality surveillance necessary to measure global, regional and country level 

excess mortality by the WHO. 

 

This report details the ongoing methods development to generate WHO excess mortality 

estimates. Section 2 outlines the data sources used, while section 3 describes the models 

used to estimate the expected death numbers. Section 4 describes our national covariate 

model and Section 5 outlines the models used for countries with subnational monthly 

data, national annual data, or a combination of both. The report also includes a 

description of the current approach used to derive preliminary age- and sex-distributions 

of excess deaths, which is covered in section 6. 
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2 Data Sources 

 
2.1 Mortality Data 

 

Excess mortality cannot be directly measured for all countries due to many not having the 

required ACM data. The WHO typically receives routine mortality data on an annual basis 

in the year after the year of death or after an even greater lag. Civil registration and vital 

statistics (CRVS) systems differ greatly across countries with varying timelines and quality 

control measures for compiling unit record cause-of-death numbers into aggregates 

identified by cause, age, sex, place, and period of death. In addition, differential reporting 

coverage, the absence of electronic surveillance systems in some locations and limited 

investments in CRVS systems has resulted in many nations lacking the structures 

necessary to provide good quality routine data, even before the COVID-19 pandemic. This 

lack of capacity and data required to monitor ACM has been further exacerbated during 

the unprecedented pandemic, rendering many countries unable to contribute to a 

centralized systematic mortality surveillance that would be needed to measure global, 

regional and country level excess mortality by the WHO. 

 

All countries report their official COVID-19 death count, but for many countries it is 

anticipated that the official counts may not be accurate, with serious underestimation, 

due to the reasons previously mentioned and for political reasons. Nonetheless, the official 

counts are used as the best available data for comparison with the estimated excess 

deaths, and the COVID-19 death rate is used as a covariate in the ACM estimation model. 

 

The primary sources of data for this study are reports of ACM collected and reported by 

relevant institutions in each country, including national statistics offices, ministries of 

health and population registries. These data have been compiled from various repositories 

such as the data routinely shared with WHO as part of its standing agreement with 

member states, Eurostat, The Human Mortality Database (HMD) as part of the Short-

Term Mortality Fluctuations (STMF) project (Németh et al., 2021) and the World Mortality 

Dataset (WMD), as described in Karlinsky and Kobak (2021). Monthly data are included 

after accounting for delayed registration either by adjusting for registration delay 

(Australia, Brazil, United States) or by not-including highly incomplete months. 

 

Table 1 provides a summary of available data for the 194 WHO Member States. The ”Full 

national” group includes countries that have data for all 24 months between January 

2020 and December 2021; The ”Partial national” group include countries that have data 

for less than 24 months; The table also includes a category for countries with 

”subnational and/or annual data” and those without any available ACM data accessible to 
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the WHO. Groupings in the table are according to the WHO regions: African Region (AFR), 

Region of the Americas (AMR), Eastern Mediterranean Region (EMR), European Region 

(EUR), South-East Asia Region (SEAR), Western Pacific Region (WPR). 

Table 1: Data availability summary for 2020 and 2021 for WHO Member States. 
 

 

Region Full 

National 

Partial 

National 

Subnational 

and/or Annual 

No 

Data 

Total 

AFR 3 2 0 42 47 

AMR 23 4 1 7 35 

EMR 8 2 0 11 21 

EUR 51 1 0 1 53 

SEAR 2 1 2 6 11 

WPR 9 0 2 16 27 

Global 96 10 5 83 194 
 

 

The current report reflects the current state of data availability, which is expected to 

improve over time. As shown in Table 1, just over a half (106) of the 194 Member States 

provide monthly national data for at least part of the pandemic period, while 5 other 

countries provide subnational monthly data, national annual data, or a combination of 

the two. However, there is a significant regional disparity in data availability, with EUR 

being almost fully represented, AMR having data from 80% of the countries, and other 

regions being more poorly represented. For instance, in AFR, only 5 out of 47 countries 

have data.  

 

As mortality data may be incomplete due to various reasons, such as incomplete 

registration or underreporting, adjusting reported deaths for completeness is needed for 

countries with available data. Adjusting for completeness is a demographic method used 

to estimate the total number of deaths that occurred in a population including those that 

may not have been recorded in the official mortality data. Details can be found in Global 

Health Estimates method’s document (ghe2019_life-table-methods.pdf (who.int)). 

Reported deaths are adjusted as follows: 

𝑌𝑐,𝑡 =
𝑌′𝑐,𝑡

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠𝑐,𝑡
, 

where 𝑌′𝑐,𝑡 represents the non-adjusted reported deaths. 

https://cdn.who.int/media/docs/default-source/gho-documents/global-health-estimates/ghe2019_life-table-methods.pdf?sfvrsn=c433c229_5
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2.2 Covariate Data 

 

For countries with no data, we predict the ACM count using a log-linear covariate model. 

A range of covariates were considered, including those measured in the pandemic period 

i.e., 

• a high income country binary indicator, 

• the COVID-19 test positivity rate, 

• the COVID-19 death rate, 

• temperature, 

• population density, 

• a socio-demographic index (SDI) and the human development index (HDI), 

• a measure of stringency (index for lockdown restrictions and closures, overall 

government response), 

• economic measures (including measures such as income support and debt relief), 

• containment1, 

and those representing pre-pandemic (for the year 2019) country characteristics: 

• non-communicable disease rate, 

• cardiovascular disease rate, 

• HIV death rate, 

• diabetes prevalence rate, 

• life expectancy at birth, 

• proportion of the population under-15 

• proportion of the population over-65. 

 

Some of the covariates are time-varying (COVID-19 test positivity rate, COVID-19 death 

rate, temperature, stringency, overall government response, containment), while the 

remainder are constant over time. A number of the covariates were not available for all 

months for all countries and so missing values were imputed using WHO regional medians. 

The final set of covariates was chosen based on the lowest out-of-sample error. 

 

 

 

 

 

 

 

 

 

1The containment measure combines “lockdown” restrictions and closures with measures such as testing policy 

and contact tracing, short term investment in healthcare, as well investments in vaccines – it is calculated using all 

ordinal containment and closure policy indicators and health system policy indicators, for further details see Hale 

et al. (2020) 
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3 Deriving expected mortality for years 2020 and 2021 

 
A key component of the excess mortality calculation is the ACM count that would be 

expected in non-pandemic times, for each country and month. We describe models 

for two types of countries: those that have historic monthly ACM data, and those that 

have historic annual ACM data only. In terms of the period upon which we base the 

expected numbers, it is usually 2015–2019 for countries with monthly historical 

data, and it is usually 2000–2019 for countries with annual historical data. 

 

3.1 Countries with Monthly Data 

 

We consider first those countries with monthly ACM data over multiple years. For 

country 𝑐, 𝑌𝑐,𝑡 represents the ACM count for country 𝑐 and month 𝑡, for 𝑡 =  1, . . . , 𝑀𝑐, 

where  𝑀𝑐  is the number of historic months for which we have data. We assume the 

sampling model for 𝑌𝑐,𝑡  is negative binomial: 

𝑌𝑐,𝑡|𝜇𝑐,𝑡  ~ NegBin(𝜇𝑐,𝑡
E , 𝜙𝑐

E), 

parametrized in terms of the mean, 𝜇𝑐,𝑡
E , and the overdispersion parameter, 𝜙𝑐

E, such that 

var(𝑌𝑐,𝑡|𝜇𝑐,𝑡
E , 𝜙𝑐

E) = 𝜇𝑐,𝑡
E (1 + 𝜇𝑐,𝑡

E ∕ 𝜙𝑐
E), with the Poisson model being recovered as 𝜙𝑐

E → ∞. 

We let 𝑣[𝑡] index the year in which month 𝑡 occurred (for example, labeled 1, . . . , 5 

when data are available for 2015–2019) and 𝑚[𝑡] be the month (labeled 1, . . . , 12), so 

that given 𝑣,𝑚 we can find 𝑡 as 𝑡 =  12(𝑣 −  1)  +  𝑚. The mean is modeled via the log-

linear form, 

𝜂𝑐,𝑡 = 𝑙𝑜𝑔(𝜇𝑐,𝑡) = 𝑓𝑐
𝑦(𝑣[𝑡]) + 𝑓𝑐

𝑚(𝑚[𝑡])   (2) 

where 𝑓𝑐
y(∙) models the annual trend, and 𝑓𝑐

m(∙) is a smooth function of time t which 

accounts for within-year seasonal variation. The yearly trend is modeled with a linear 

model and within-year variation with a cyclic cubic spline (Rivera et al., 2020). For 

the latter, we use the gam function in the mgvc package with REML used to select 

smoothing parameters (and with the default settings). The models are fitted 

separately for each country and used to obtain predictions of the expected deaths 𝜇𝑐,𝑡
E  

for all 𝑡 in 2020 and 2021, with both a point estimate and a standard deviation being 

produced, and these can be viewed as summaries of the posterior distribution, see 

Section 6.10 of Wood (2017) for details. 
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3.2 Countries with Annual Data 

 

For countries with only annual historic data, the goal is to predict expected numbers 

by month 𝑡 for 𝑡 =  1, . . . ,24. We summarize our strategy for producing expected 

numbers for countries with annual data only, before giving details:  

1. Fit a negative binomial linear model to the countries with annual counts 

only. Use the spline to predict the total annual ACM for 2020 and 2021, for 

these countries. 

2. In a separate exercise, fit the multinomial model to all of the countries with 

monthly data, with deaths being attributed via a log-linear temperature 

model. 

3. Combine the linear model with the multinomial model using monthly 

temperature apportionment to obtain expected numbers for the countries 

without monthly data. 

 

The annual trend can be estimated for each country using the method we described 

in the previous section minus the monthly term, i.e., by using a linear model for year. 

To apportion the yearly totals to the months, we use the fact that a collection of 

Poisson random variables conditioned on their sum produce a multinomial 

distribution with within-year variation modeled using temperature, which is acting as 

a surrogate for seasonality. It is well-known that mortality is associated with 

temperature (see for example Parks et al. (2018)), and we wanted a relatively simple 

model, using a well-measured variable. This relationship is learned from countries 

with historic monthly data. We use a smooth series of monthly temperatures since 

2015. Let 𝒀𝑐,𝑣 = {𝑌𝑐,𝑣,𝑚,𝑚 = 1,… , 12}  be the vector that contains the ACM counts by 

month in year 𝑣, 𝑣 =  1, . . . ,5, for country 𝑐. Suppose each of the 12 constituent counts 

are Poisson with mean 𝜁𝑐,𝑣,𝑚, for 𝑚 =  1, . . . ,12. Then, within year 𝑣, conditional on the 

total ACM, 𝑌𝑐,𝑣
+ , 

𝒀𝑐,𝑣|𝑌𝑐,𝑣
+ , 𝒑𝑐,𝑣  ~ Multinomial(𝑌𝑐,𝑣

+ , 𝒑𝑐,𝑚), 

where 𝒑𝑐,𝑣 = {𝑝𝑐,𝑣,𝑚,𝑚 = 1,… , 12} with, 

𝑝𝑐,𝑣,𝑚 =
𝜁𝑐,𝑣,𝑚

∑  12
𝑚=1 𝜁𝑐,𝑣,𝑚

, 
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We assume, 

log(𝜁𝑐,𝑣,𝑚) = 𝑧𝑐,𝑣,𝑚𝛽             (3) 

where 𝑧𝑐,𝑣,𝑚 is the temperature and 𝛽 is the associated log-linear coefficient; no intercept is 

needed in the log-linear model, since when we take the ratio, to form the multinomial 

prob- abilities, if included, it would cancel. The multinomial model can be fitted in INLA 

using the Poisson trick (Baker, 1994) which involves fitting the Poisson model for the data 

in country 𝑐, month 𝑚:  

𝑌𝑐,𝑣,𝑚|𝜆𝑐,𝑣  ~ Poisson(𝜆𝑐,𝑣𝑒
𝑧𝑐,𝑣,𝑚𝛽), 

where the 𝜆𝑐,𝑣 parameters are given (improper) priors 𝜋(𝜆𝑐,𝑣) ∝ 1/𝜆𝑐,𝑣. We use the default 

INLA prior for 𝛽, which is a normal with a large variance. Further details of the Poisson trick 

may be found in Section 3 of the Supplementary Material (Knutson et al., 2023). 

 

3.3 Modeling Uncertainty in the Expected Numbers 

 

For all countries the expected numbers appear directly in the excess calculation, (1). In 

addition, for countries with no pandemic ACM data, the Poisson model we adopt for covariate 

modeling includes the expected number as an offset. For all countries and months, we obtain 

not just an estimate of the mean expected mortality but also a measure of the uncertainty (due 

to uncertainty in estimating the linear + spline model) in this estimate. We now describe how 

the uncertainty in the mean expected count is accounted for in our modeling. 

 

For countries with monthly data, we use the annual linear and monthly spline model to predict 

the log of the mean expected number of deaths. Asymptotically, the estimator for the log of the 

mean expected numbers is normally distributed. Let 𝜂̂𝑐,𝑡′ and 𝜎̂𝑐,𝑡′
2  represent the mean and 

standard deviation of the log prediction for pandemic months, labeled as 𝑡′ = 1,… , 24. We 

stipulate 𝑆 samples from the asymptotic normal sampling distribution with mean 𝜂̂𝑐,𝑡′ and 

standard deviation 𝜎̂𝑐,𝑡′ ; denote these samples by 𝜂𝑐,𝑡′
(𝑠)
, 𝑠 = 1,… , 𝑆. We then transform the 

samples so that we have samples for the expected numbers 𝐸𝑐,𝑡′
(𝑠)
= exp (𝜂𝑐,𝑡′

(𝑠)
), for 𝑠 =  1, . . . , 𝑆. 

We then use the method of moments to fit a gamma distribution of these 𝑆 samples with shape 

𝜏𝑐,𝑡 and rate 𝜏𝑐,𝑡′/𝐸𝑐,𝑡′. In particular, letting 𝑚𝑐,𝑡′ denote the sample mean, and 𝑉𝑐,𝑡′ denote the 

sample variance, we set 𝐸̂𝑐,𝑡′ = 𝑚𝑐,𝑡′ and 𝜏̂𝑐,𝑡′ =
𝑚
𝑐,𝑡′
2

𝑉𝑐,𝑡′
. We approximate the distribution of 

the expected numbers as gamma since this is conjugate to the Poisson, and so allows 

efficient inference with INLA (Rue et al., 2009) using a negative binomial model, as we describe 

in Section 4. Effectively, we are approximating the sampling distribution of the mean expected 

count by a gamma distribution. 
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We now consider a generic country 𝑐 with yearly data only. In pandemic year 𝑣′, we use the 

linear model to predict the log of the expected number of deaths. Let 𝜂̂𝑐,𝑣′ and 𝜎̂𝑐,𝑡′
2  represent   

the mean and standard deviation of the prediction, for (the two pandemic years). We then 

simulate 𝑆 samples from a normal distribution with mean 𝜂̂𝑐,𝑣′ and standard deviation 𝜎̂𝑐,𝑣′; 

denote these samples by 𝜂𝑐,𝑣′ 
(𝑠)

, 𝑠 =  1, . . . , 𝑆. We then transform the samples so that we have 

samples for the expected numbers 𝐸𝑐,𝑣′
(𝑠)
= exp (𝜂𝑐,𝑣′

(𝑠)
), for 𝑠 = 1,… , 𝑆.  

 

We then apply the monthly temperature model to produce predictions of the proportion of 

deaths in each month in each year, i.e., for a given pandemic month 𝑚′, we have 𝑆 samples of 

the predicted proportion of deaths in month 𝑚′ of year 𝑣′, 𝑝𝑐,𝑣′,𝑚′
(𝑠)

, for 𝑠 =  1, . . . , 𝑆. Converting to 

pandemic months 𝑡′ =  12(𝑣′ −  1)  +  𝑚′ we then produce samples of the expected number of 

deaths in month 𝑡′, as 

𝐸𝑐,𝑡′
(𝑠)
= 𝐸𝑐,𝑣′

(𝑠)
× 𝑝𝑐,𝑣′,𝑚′

(𝑠)
. 

 

We then use the method of moments to fit a gamma distribution to these 𝑆 samples, as for the 

countries with monthly data. To summarize, in both cases we have a distribution for 

𝐸𝑐,𝑡′which is Gamma(𝜏̂𝑐,𝑡′. 𝜏̂𝑐,𝑡′/𝐸̂𝑐,𝑡′). In Section 3 of the Supplementary Materials (Knutson 

et al., 2023) we provide comparisons of the true distribution of the mean expected counts 

and the approximating gamma distributions, and illustrates that the latter are accurate. 

We also experimented with including negative binomial sampling variability in the 

calculation of the expected numbers, but it made little additional contribution to the 

intervals for the excess. 

 

In the next section we describe a Bayesian model for the ACM counts in the pandemic, for 

countries without data. As we have described above, inference for the expected numbers is 

an approximation to a Bayesian analysis. We sample from the asymptotic normal 

distribution of the prediction estimator which will approximate a Bayesian analysis with 

(improper) flat priors. Hence, when we combine the two components in the excess (1) we 

view the resultant inference as Bayesian. We next describe how we model ACM – we have 

different models for different data scenarios but in each case the starting point is the 

Poisson distribution. 
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4 National Mortality Models for Countries with No Data 

 

For countries with observed monthly national ACM data, 𝑌𝑐,𝑡′, we use these directly in the 

excess calculation. For the countries with no data we need to estimate the ACM count. We 

follow a Bayesian approach so that for countries without data we obtain a predictive 

distribution over this count and this, when combined with the gamma distribution for the 

expected numbers, gives a distribution for the excess 𝛿𝑐,𝑡. 

Figure 1: Monthly time series of ACM counts, expected counts (with 95% interval estimates) and 

reported COVID-19 mortality counts, for selected countries. ACM counts are available for all months apart 

from Egypt, for which the last month is missing. 

 

In Figure 1 we plot the monthly counts for a range of countries with monthly ACM data, 

along with the reported COVID-19 deaths and the expected numbers. We see very 

different scenarios in different countries. In all countries but Japan there is a clear large 

difference between the observed and the expected, though within each country this 

difference shows large fluctuations over time. In Figure 2, again for countries with 

monthly ACM data, we plot the excess 𝛿𝑐,𝑡 = 𝑌𝑐,𝑡 − 𝐸𝑐,𝑡 as a function of month 𝑡 

(including uncertainty in the expected numbers), along with the reported COVID-19 

deaths. As expected, 𝛿𝑐,𝑡 is greater than the reported overall in general, except in Japan, 

and for most countries displayed the difference between the excess and the reported 
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shows a complex temporal pattern. 

 

Figure 2: Monthly time series of excess mortality, along with reported COVID-19 mortality counts. ACM 

counts are available for all months apart from Egypt, for which the last month is missing. For this 

month, the covariate prediction model is used for the point and interval estimates. 

 

While complex models that attempt to pick up data nuances are desirable, given the 

idiosyncrasies of the different data sources described in Section 2, any modeling 

exercise is fraught with difficulties, and we resort to a relatively simple model in which 

we build an overdispersed Poisson log-linear regression model for the available monthly 

ACM data to predict the monthly ACM in those countries with no data. We cannot 

overemphasize the regional im- balance of the missing ACM data – in the AFR region in 

particular, our estimates should be viewed with extreme caution, since they are 

predicted from data which overwhelmingly is from other regions. 

 

The basic starting model is 

𝑌𝑐,𝑡|𝐸𝑐,𝑡, 𝜃𝑐,𝑡 ~ Poisson(𝐸𝑐,𝑡𝜃𝑐,𝑡)   (4) 

so that 𝜃𝑐, 𝑡 >  0 is a relative rate parameter, with the cases 𝜃𝑐, 𝑡 >  1 and 𝜃𝑐, 𝑡 <  1 

corresponding to higher and lower ACM rates than expected, based on historic data. 

Recall, from Section 3, that we model the distribution of the expected counts 𝐸𝑐,𝑡  as 

Gamma(𝜏̂𝑐,𝑡 , 𝜏̂𝑐,𝑡/𝐸̂𝑐,𝑡).  
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When combined with (4), we obtain the sampling model, 

𝑌𝑐,𝑡|𝜃𝑐,𝑡  ~ NegBin(𝐸̂𝑐,𝑡𝜃𝑐,𝑡 , 𝜏̂𝑐,𝑡) 

with known overdispersion parameter 𝜏̂𝑐,𝑡to give var(𝑌𝑐,𝑡|𝜃𝑐,𝑡) = 𝐸̂𝑐,𝑡𝜃𝑐,𝑡(1 + 𝐸̂𝑐,𝑡𝜃𝑐,𝑡/𝜏̂𝑐,𝑡). 

The mean is E[𝑌𝑐,𝑡|𝜃𝑐,𝑡 = 𝐸̂𝑐,𝑡𝜃𝑐,𝑡  and the relative rate parameter 𝜃𝑐,𝑡  is modeled as, 

log𝜃𝑐,𝑡 = 𝛼 + ∑ 𝛽𝑏𝑡𝑋𝑏𝑐𝑡
𝐵
𝑏=1 +∑ 𝛾𝑔𝑍𝑔𝑐

𝐺
𝑔=1 + 𝜖𝑐,𝑡   (5) 

We now describe parameter interpretation and model details. 

• The intercept is 𝛼. 

• The time-invariant covariates (e.g., income level, historic cardiovascular and 

diabetes rates) have fixed log-linear association parameters 𝛾𝑔 . 

• We have 𝐵 time-varying covariates (e.g., sqrt(C19 death rate), test positivity rate, 

containment, temperature, and their interaction with income level) as well as the time 

invariant covariates, and we allow the log-linear associations for these variables, 𝛽𝑏𝑡, to 

be time-varying via a random walk of order 2 (RW2) prior (Rue and Held, 2005) which 

has variance 𝜎𝛽
2. These parameters include a sum-to-zero constraint, since we include a 

fixed effect for the overall association (across months) – these are included in the 𝐺 

time-invariant part of the model. 

• There are two sources of excess-Poisson variation in our model. The negative 

binomial component, with known 𝜏̂𝑐,𝑡, arises because of the uncertainty in the expected 

numbers. 

• The Bayesian model is completed by prior specifications on the regression 

coefficients of the log-linear model and any hyperparameters. We use default priors 

(normal with large variance) on the intercept and fixed association parameters, and 

penalized complexity (PC) priors (Simpson et al., 2017) on the RW2 standard deviations 

and on 𝜎𝜖. Specifically, letting σβ denote a generic RW2 standard deviation parameter, 

the PC priors are such that Pr(𝜎𝛽 > 1) = 0.01, and the PC prior on the overdispersion 

parameter 𝜎𝜖 has Pr(𝜎𝜖 > 1) = 0.01. 

 

Each country will clearly have its own specific temporally correlated baseline, as a 

result of unobserved covariates and model misspecification, but we did not include 

terms to model such a baseline (using a RW2 or a spline, for example), since fits from 

this model are not being used to estimate the excess for countries with data. Rather, we 

are using this model to predict the ACM for countries with no data. Hence, we did not 

use RW2 intercepts as these would dilute the covariate effects, due to confounding by 

time (Kelsall et al., 1999), and it is these covariate effects that are key to prediction for 

countries with no data. If we had included a RW2 baseline, then a country-specific RW2 

model would give estimated contributions of zero in countries with no data and so 

would not provide any benefit. This is but one of the model assumptions that are forced 
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upon us by the limited data we have available. The country-level model was fitted using 

the INLA method (Rue et al., 2009) and accompanying R implementation. 

 

For countries with no ACM data, we obtain a predictive distribution by averaging the 

negative binomial model with respect to the posterior via, 

Pr(𝑌𝑐,𝑡|𝒚) = ∫ Pr(𝑌𝑐,𝑡|𝜃𝑐,𝑡)⏟        
Negative Binomial

 

 

× 𝑝(𝜃𝑐,𝑡|𝒚)⏟      
Posterior

 𝑑𝜃𝑐,𝑡 . 

We use INLA to fit the covariate model, and then use the posterior sampling feature to 

produce samples for the components of (5), which in turn produces samples 

𝜃𝑐,𝑡
(𝑠)
 ~ 𝑝(𝜃𝑐,𝑡|𝒚)from the posterior. We then simulate 𝑌𝑐,𝑡

(𝑠)
|𝜃𝑐,𝑡
(𝑠)

 from the negative binomial, 

for 𝑠 = 1,… , 𝑆. 

 

Partial monthly data is available for 10 countries, and for these we require a switch 

from observed data to the covariate modeled ACM. The naive application of the covariate 

model will lead to the possibility of unrealistic jumps (up or down) when we switch from 

the observed data to the covariate model, and to alleviate this problem we benchmark 

the predictions to the last observed data point. We let 𝑇𝑐
(1)
 represent the number of 

observed months of data and 𝑇𝑐
(2)
 be the number of months for which there are no data, 

for country c. For a country with partial data, let 𝒚𝑐
(1)
= [𝑦𝑐,1, … , 𝑦𝑐,𝑇𝑐

(1)] represent the 

observed partial data. We then wish to predict the 𝒚𝑐
(2)
= [𝑦

𝑐,𝑇𝑐
(1)
+1
, … , 𝑦

𝑐,𝑇𝑐
(1)
+𝑇𝑐

(2)] for the 

missing period. The model for the missing data period is, 

𝑦𝑐,𝑡
(2)
|𝒚𝑐
(2)
, 𝜃𝑐,𝑡 , 𝑓𝑐  ~ NegBin(𝐸̂𝑐,𝑡𝜃𝑐,𝑡𝑓𝑐, 𝜏̂𝑐,𝑡)   (6) 

for 𝑡 = 𝑇𝑐
(1)
+ 1,… , 𝑇𝑐

(1) + 𝑇𝑐
(2)

, where 𝜃𝑐,𝑡 is a function of the covariates in the missing 

data period (specifically given by (5)), and the benchmarking factor is, 

𝑓𝑐 = 𝑓𝑐 (𝜃𝑐,𝑇𝑐
(1)) =

𝑦
𝑐,𝑇𝑐

(1)

𝐸̂
𝑐,𝑇𝑐

(1)𝜃
𝑐,𝑇𝑐

(1)

, 

where 𝜃
𝑐,𝑇𝑐

(1)  is given by equation (5). This factor matches the last observed death count 

to the covariate model projected back to the last observed count. This factor is applied 

subsequently to all of the missing data months. To implement the benchmark, samples 

from the posteriors for 𝜃𝑐,𝑡  and 𝑓𝑐 are used in (6), and then negative binomial counts are 

drawn. 
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5 Observed Mortality Subnational and Annual Data Modeling 

 
For a small number of countries for which national ACM data are not available (India 

and Indonesia) we instead have ACM data from subregions, with the number of regions 

with data potentially changing over time. For other countries we obtain national annual 

ACM data only. In this section we describe the models we use in these situations. For 

the subnational scenario we construct a statistical model building on, and expanding, a 

method previously proposed by Karlinsky (2022) that is based on a proportionality 

assumption. 

 

5.1 Subnational Data Model 

 

For Indonesia we have monthly subnational data for 2020 and for the first six month of 

2021. India has data from 17 states and union territories over the pandemic period (out 

of 36), but this number varies by month. 

Figure 3: Plot of missingness in subnational data for India across 2015–2021. 

 

We consider the most complex subnational scenario in which the number of regions 

with monthly data varies by month, using India as an example. For India, we use a 

variety of sources for registered number of deaths at the state and union-territory level. 

The information was either reported directly by the states through official reports and 

automatic vital registration, or by journalists who obtained death registration 

information through Right To Information requests (see Section 6 of the Supplementary 

Materials (Knutson et al., 2023) for full details). 
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The available data we have for India is summarized in Figure 3. We assume in total that 

there are K regions that contribute data at any time. We develop the model for a generic 

country and hence drop the 𝑐 subscript. 

 

For the historic data in month 𝑡 we have total deaths counts along with counts over 

regions, 𝑌𝑡,𝑘, 𝑘 ∈ 𝐾𝑡, so that in period 𝑡, |𝐾𝑡|is the number of regions that provide data 

with 𝑘 ∈ 𝐾𝑡 being the indices of these areas from {1, . . . , 𝐾 }. We let region 0 denote all 

other regions, which are not observed in pandemic times, at time 𝑡 and let 𝑆𝑡 = {0,𝐾𝑡}. 

We assume, in month 𝑡: 

𝑇𝑡,𝑘|𝜆𝑡,𝑘  ~ Poisson(𝑁𝑡,𝑘𝜆𝑡,𝑘),     𝑘 ∈ 𝑆𝑡,, 

where 𝑁𝑡,𝑘 is the population size, and 𝜆𝑡,𝑘  is the rate of mortality. Hence, the national 

total in year 𝑡 is distributed as 

𝑌𝑡+|𝜆𝑡,𝑘 , 𝑘 ∈ 𝑆𝑡 ~ Poisson(∑ 𝑁𝑡,𝑘𝜆𝑡,𝑘
𝑘∈𝑆𝑡

). 

If we condition on the total deaths, we obtain, 

𝒀𝑡|𝒑𝑡 ~ Multinomial|𝑆𝑡|(𝑌𝑡+, 𝒑𝑡), 

with 𝒑𝒕 = {𝑝𝑡,𝑘, 𝑘 ∈ 𝑆𝑡}, and,  

𝑝𝑡,𝑘 = Pr(death in region 𝑘 |month 𝑡, death) =
𝑁𝑡,𝑘𝜆𝑡,𝑘
𝑁𝑡,+𝜆𝑡,+

, 

 

Our method hinges on this ratio being approximately constant over time. If, over all 

regions in which data are observed combined, there are significant changes in the 

proportions of deaths in the regions as compared to the national total, or changes in 

the populations within the regions over time, then the approach will be imprecise for 

estimation of a natural total. However, with multiple regions, we gain robustness 

since it is the cumulative departure from the constant fractions that is relevant. For 

India, the fractions of the total ACM by state are shown in Figure 4. There are 

certainly deviations from constancy for some states, but in general the assumption 

appears tenable, at least in pre-pandemic periods. Of course, the great unknown is 

whether the assumption remains reasonable over the pandemic. To address this, we 

carry out extensive sensitivity and cross-validation analyses (reported in Section 6 of 

the Supplementary Materials (Knutson et al., 2023)). 

 

We model the monthly probabilities as, 

log (
𝑝𝑡,𝑘

𝑝𝑡,𝐾𝑡+1
) = 𝛼𝑘 + 𝑒𝑡,     𝑘 ∈ 𝑆𝑡 ,   (7) 

where the 𝛼𝑘 parameters are unrestricted and 𝑒𝑡~N(0, 𝜎𝜖
2), and we can examine the 

size and temporal structure of the error terms 𝑒𝑡, to assess the proportionality 

assumption, at least over the available pre-pandemic period. We emphasize that we 
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do not use any covariates in the subnational model, but infer the national ACM from 

the subnational contributions. 

Figure 4: Plot of estimated proportion of subnational deaths to national deaths by state in pre-

pandemic and pandemic periods (grey rectangle). The horizontal flat lines are the point estimates for 

the fraction for the respective states during the pandemic months. 

 

To specify the model, we take a multinomial with a total number of categories that 

corresponds to all regions that appear in the data, 𝐾, along with a final category for 

the unknown remainder. We specify the likelihood over all months by exploiting the 

property that a multinomial collapsed over cells is also multinomial. Hence, in year t 

we have a multinomial with |𝐾𝑡| + 1 categories with constituent probabilities 

constructed from the full set of 𝐾 +  1 probabilities. 

 

To derive the predictive distribution, we abuse notation and let 𝑌𝑡,1 denote the total 

number of observed subnational deaths at time 𝑡, and 𝑌𝑡,2 the total number of 

unobserved subnational deaths at time 𝑡, with 𝑌𝑡,+ = 𝑌𝑡,1 + 𝑌𝑡,2being the total (national) 

number of deaths at time 𝑡. Hence, at time 𝑡, 𝑌𝑡,1|𝑝𝑡, 𝑌𝑡,+ ~ Binomial(𝑌𝑡,+, 𝑝𝑡), where 𝑝𝑡 =

∑ 𝑝𝑡,𝑘𝑘∈𝐾𝑡  
. In order to fit the multinomial model in a Bayesian framework and predict 

the total number of deaths in 2020– 2021, we need to specify a prior for 𝑌𝑡,2 or, 

equivalently, for 𝑌𝑡,+, where 𝑡 indexes months in this period. We will use the prior 

𝑝(𝑌𝑡,+) ∝ 1/𝑌𝑡,+, which is a common non-informative prior for a binomial sample size 

(Link, 2013), and has the desirable property that the posterior mean for 𝑌𝑡,2, 

conditional on 𝑝𝑡, is E[𝑌𝑡,2|𝑝𝑡] = 𝑌𝑡1(1 − 𝑝𝑡)/𝑝𝑡, i.e., of the same form as the simple 

frequentist “obvious” estimator, which leads to the naive estimate of the ACM, 𝑌𝑡,1 +

𝑌̂𝑡,2 = 𝑌𝑡,1/𝑝𝑡. 
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To give more details for implementation we will use a general result. Suppose 

𝑌𝑡,1|𝑌𝑡,+, 𝑝𝑡   ~  Binomial(𝑌𝑡,+, 𝑝𝑡) 

𝑝(𝑌𝑡,+)  ∝  1/𝑌𝑡,+, 

so that, in particular, the marginal distribution of 𝑌+𝑡 does not depend on 𝑝𝑡. Then the 

posterior for the missing ACM count, conditional on 𝑝𝑡, is 

𝑌𝑡,+|𝑌𝑡,1, 𝑝𝑡  ~ 𝑌𝑡,1 + NegBin(𝑌𝑡,+, 1 − 𝑝𝑡) 

or, equivalently, 

𝑌𝑡,+ − 𝑌𝑡,1|𝑌𝑡,1, 𝑝𝑡  ~ NegBin(𝑌𝑡,1, 1 − 𝑝𝑡). 

This links to one of the usual motivations for a negative binomial (number of trials 

until we observe a certain fixed number of events) — making inference for the number 

of total deaths it takes to produce 𝑌𝑡,1 deaths in the sub-regions. We implement this 

model in Stan. In Section 4 of the Supplementary Materials (Knutson et al., 2023) we 

detail a simulation study that validates the method in the situation in which the 

missing data follow the assumed form. 

 

For the other countries with subnational data, the number of subregions is constant 

over time, and so in the above formulation the multinomial is replaced by a binomial. 

Details for these countries are in Section 6 of the Supplementary Materials (Knutson 

et al., 2023). For Indonesia we have subnational data from only Jakarta at the 

monthly level and historic national ACM at the annual level. Hence, we fit a binomial 

subnational model to the annual historic data, summing the monthly subnational 

historic data to the annual level, and then predict the monthly national ACM for 

2020–2021 using the 𝑝𝑡 fit on the historic annual data. 

 
5.2 Annual Data Model 

 

We have annual national ACM counts for Viet Nam, China and Grenada. For these 

countries we estimate the monthly counts using a multinomial model. This model is 

derived from the overdispersed Poisson model (4) that is used for countries with no 

pandemic data. Conditioning on an annual total leads to a multinomial model for the 

monthly ACM within-year counts with apportionment probabilities 𝐸𝑐,𝑡𝜃𝑐,𝑡/

∑ 𝐸𝑐,𝑡′
12
𝑡′=1 𝜃𝑐,𝑡′ where 𝜃𝑐,𝑡 is given by the log-linear covariate model (5). To obtain counts 

for these countries, we sample expected numbers 𝐸𝑐,𝑡  and rates 𝜃𝑐,𝑡from the posterior 

and subsequently sample multinomial counts with these probabilities. 
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6 Methods for deriving the age- and sex-pattern of excess deaths 

 
Beyond determining the levels of excess mortality attributable to COVID-19, we intend 

to disaggregate these deaths by age and sex. Unfortunately, for most countries, the 

mortality data available for the years 2020 and 2021 do not include information on age 

and sex. This information is crucial for understanding how COVID-19 has affected 

different age and sex groups, how it compares to other causes of death, and how it has 

impacted life expectancy. In particular, these are important for generating WHO Global 

Health estimates for the current year and projections within the World Population 

Prospects.  

 

To generate estimates of excess mortality by age and sex, we compare the expected age 

sex distribution for the years 2020 and 2021 with the reported data from places where 

such information is available. For a specific location, the reported (or observed) death 

numbers for a particular age-group 𝑥, sex 𝑠, country 𝑐 in year 𝑦, are represented as 

𝑌𝑐, 𝑦, 𝑠, 𝑥 

These numbers are assumed to be the result of both direct and indirect effects of 

COVID-19, i.e. the deaths directly attributable to it and the indirect knock-on effects on 

health systems and society.  

 

To determine the expected number of deaths in the absence of COVID-19 (i.e. how many 

deaths would have occurred in a no-COVID-19 scenario), we use historical data to 

forecast the number of deaths, which is represented as  

𝐸𝑐, 𝑦, 𝑠, 𝑥 

Excess deaths by age and sex, represented by 𝛿𝑐, 𝑦, 𝑠, 𝑥, can be calculated as the difference 

between the reported and the expected death numbers : 

𝛿𝑐, 𝑦, 𝑠, 𝑥 =  𝑌𝑐, 𝑦, 𝑠, 𝑥 −  𝐸𝑐, 𝑦, 𝑠, 𝑥 

As with the approach taken for deaths over all ages and for both sexes combined, the 

goal is to identify standard patterns of excess mortality by age and sex in places with 

reported data and then use these patterns to estimate excess mortality by age and sex in 

countries where such information is not available. Simultaneously, we aim to propagate 

the uncertainty in the overall excess death numbers for the years 2020 and 2021 

(predicted using the statistical models for overall mortality) to the predicted age- and 

sex- patterns. More details on the steps required to accomplish this can be found in the 

following sections.  
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6.1 Countries with observed age-sex data for years 2020 and 2021 
 

We consider country- and sex-specific deaths for the year 2020 aggregated to broad age-

bands 𝑥 ∈  {0, 1 −  4, 5 −  9, . . . , 95+}. Of interest is the location- and year-𝑡-specific 

death-rate in age interval 𝑥,represented by 𝑚𝑥,𝑡. This rate is calculated using the 

available counts and population numbers from the World Population Prospects (WPP). 

However, data for this level of granularity is only available for a subset of countries for 

the years 2020 and 2021. Of these, we have excluded the countries that have 

experienced conflict, have very small populations, incomplete death data, and/or 

erratic/implausible age-patterns. The countries with age-sex patterns that we have 

incorporated into our model framework are listed in Table 2 below. 

 

Table 2: Countries with age and sex data used in model 

 

     WHO Region ISO3 Population Deaths 2020 Deaths 2021 
 

1 AFR CPV 582664 2959  

2 AFR MUS 1297836 11060 13274 

3 AFR ZAF 58801925 583954 711556 

4 AMR ARG 45036031 377234  

5 AMR BOL 11936172 74863 84301 

6 AMR BRA 213196297 1556824 1855622 

7 AMR CAN 37888711 307702 311956 

8 AMR CHL 19300310 126169 137426 

9 AMR COL 50930668 301432 363078 

10 AMR CRI 5123118 26209 31081 

11 AMR CUB 11300699 112449 167645 

12 AMR DOM 10999673 45861 47799 

13 AMR ECU 17588595 116397 105321 

14 AMR GTM 17362729 96066 118093 

15 AMR MEX 125998305 1071243 1102123 

16 AMR NIC 6755901 33681  

17 AMR PAN 4294407 23876  

18 AMR PER 33304754 240919 264086 

19 AMR PRY 6618699 35263 52711 

20 AMR URY 3429084 32638 41168 

21 AMR USA 335941996 3390165 3471759 

22 EMR BHR 1477490 3488  

23 EMR EGY 107465141 666200  

24 EMR IRN 87290197 505080 531068 

25 EMR IRQ 42556991 152901  

26 EMR KWT 4360455 10569  
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27 EMR OMN 4543407 10589 12649 

28 EMR TUN 12161729 75058  

29 EUR ALB 2866849 27605 30580 

30 EUR AUT 8907775 89879 89864 

31 EUR AZE 10284962 75647 76878 

32 EUR BEL 11561717 126748 112303 

33 EUR BGR 6979184 124703 149040 

34 EUR BIH 3318423 42803  

35 EUR CHE 8638611 75994 71010 

36 EUR CZE 10530961 129327 139876 

37 EUR DEU 83328993 985106 1023653 

38 EUR DNK 5825640 54621 57214 

39 EUR ESP 47363802 492287 449041 

40 EUR EST 1329450 15706 18355 

41 EUR FIN 5529472 55435 57703 

42 EUR FRA 64480059 654540 643748 

43 EUR GBR 67059477 687182 667318 

44 EUR GEO 3765911 50537 59906 

45 EUR GRC 10512232 131033 143792 

46 EUR HRV 4096876 56992 62873 

47 EUR HUN 9750582 140997 155573 

48 EUR IRL 4946128 32856  

49 EUR ISR 8757489 48797 50756 

50 EUR ITA 59500577 746146 709035 

51 EUR KAZ 18979246 162613 183357 

52 EUR KGZ 6424882 39977  

53 EUR LTU 2820277 43516 47758 

54 EUR LVA 1897052 28825 34587 

55 EUR MDA 3084860 40716 45386 

56 EUR NLD 17434561 168609 170756 

57 EUR NOR 5379846 40598 42003 

58 EUR POL 38428368 478138 519877 

59 EUR PRT 10298190 123685 125188 

60 EUR ROU 19442042 296880 335530 

61 EUR RUS 145617325 2138586 2441594 

62 EUR SRB 7358011 116850 135901 

63 EUR SVK 5456689 59089 73461 

64 EUR SVN 2117651 23960 23764 

65 EUR SWE 10368965 95412 89019 

66 EUR UKR 43909669 616835 714263 

67 EUR UZB 33526665 175637 174540 

68 SEAR THA 71475663 501438 563650 

69 WPR AUS 25670047 162639 172012 
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70 WPR BRN 441750 1752  

71 WPR JPN 125244761 1384544 1452289 

72 WPR KOR 51844686 305049 317506 

73 WPR MNG 3294344 15922 19931 

74 WPR MYS 33199999 166507  

75 WPR NZL 5061135 32738 34908 
 

 

 

 

6.2 Grouping countries to generalize age-sex patterns 

 

We need to determine how to group the countries with available data on age and sex so 

that we can use that information to extrapolate the age-sex impact of COVID-19 on 

locations without data. One possible way would be to group countries geographically, 

using regional identification such as WHO regions. However, this approach presents two 

challenges: 

1. Some regions are not well represented in the available observed data, for example, 

there are only a few countries from the AFR and SEAR regions. 

2. Countries that are geographically close can have vastly different impacts of the 

pandemic, including by age and sex. For instance, Finland and Russia share borders, 

but the excess death rates for these countries are significantly different. 

Instead of relying on the natural geography to group the data, we allow the data to drive 

the grouping. We apply the K -means clustering approach (Likas et al., 2003), which is 

commonly used to partition a dataset into K groups automatically. The K -means 

method characterizes the data by using K centers of clusters. Each observation 𝑥𝑖 is 

assigned to a given cluster such as the sum of squares distance of the observation to 

their assigned cluster centers (𝑚𝑘) is minimised. We defined the total within-cluster 

variation as follows;  

𝐽𝐾 =∑ ∑ (𝑥𝑖
𝑥𝑖∈𝐶𝑘

𝐾

𝑘=1

−𝑚𝑘)
2 

, where 𝑥𝑖 is a data point belonging to the cluster 𝐶𝑘  and 𝑚𝑘  is defined as the mean value 

of the points assigned to the cluster 𝐶𝑘 

𝑚𝑘 = ∑
𝑥𝑖

𝑛𝑘
𝑖∈𝐶𝑘  (𝑛𝑘 being the number of points in 𝐶𝑘). 
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There are numerous options of features that could be utilized to construct the data 

matrix 𝑋 = (𝑥1, … , 𝑥𝑛), which is used to inform the clusters. Four features are considered 

in total (one of which relates to the predicted excess mortality attributable to COVID-19): 

 

1. For each country, the human development index for year 2019: 

𝑓1 = 𝐻𝐷𝐼 
2. For each country, the mean age at death in 2019: 

𝑓2 =
∑ 𝑥 × 𝑌𝑥,2019𝑥

∑ 𝑌𝑥,2019𝑥
 

, where 𝑌𝑥,2019 refers to the age-specific all causes deaths in 2019. 

3. For each country, the crude excess mortality rate estimated for year 𝑡: 

𝑓3,𝑡 =
𝛿𝑡

∑ 𝑁𝑥,𝑡𝑥
 

, where 𝛿𝑡 represents the predicted overall excess deaths and 𝑁𝑥,𝑡 corresponds to the 

age-specific population numbers. 

4. For each country, the excess deaths relative to the total all causes number of 

deaths for year t (as a percentage): 

𝑓4,𝑡 =
𝛿𝑡
𝑌𝑡

 

, where 𝑌𝑡 represents the estimated or reported total number of deaths. 

 
These are derived for each WHO member state and normalized to derive the X 
matrix: 

𝑋(194,4) =

[
 
 
 
 
𝑓1,1 𝑓2,1 𝑓3,1 𝑓4,1
⋮ ⋮ ⋮ ⋮
𝑓𝑗,1 𝑓𝑗,2 𝑓𝑗,3 𝑓𝑗,4
⋮ ⋮ ⋮ ⋮

𝑓194,1 𝑓194,2 𝑓194,3 𝑓194,4]
 
 
 
 

 

 

The K-means approach is used for the subset of countries with available observed 

sex- and age-specific data for the year 2020. The number of clusters 𝐾 is chosen in 

order that it maximises the variation between clusters and minimises the variation 

within clusters. For each year, five clusters are generated. The resulting cluster 

compositions are presented in Figure 5 and tables 3 and 4 list the respective cluster 

constituents. 
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Figure 5: K-means cluster allocation by ISO3 for years 2020 and 2021 

K−means clusters: (hdi, mean age at death, excess rate and percent), 2020 

 

 

K−means clusters: (hdi, mean age at death, excess rate and percent), 2021 
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Table 3: K-means cluster allocation for 2020 Table 4: K-means cluster allocation for 2021 

 
1 2 3 4 5  1 2 3 4 5 

AUS BHR ALB BOL ARG  AUS CHL BGR ALB CRI 

CAN BRN AZE BRA AUT  AUT CZE CUB AZE DOM 

DEU CRI BGR COL BEL  BEL GBR GEO BOL ECU 

DNK CUB ECU CPV BIH  CAN GRC LTU BRA GTM 

EST DOM KAZ EGY CHE  CHE ITA LVA COL IRN 

FIN IRQ LTU GTM CHL  DEU NLD PER EST MNG 

IRL MNG MDA IRN CZE  DNK PRT ROU HRV MUS 

ISR MUS MEX KGZ ESP  ESP SVN RUS HUN OMN 

JPN MYS PER KWT FRA  FIN URY SRB   KAZ THA 

KOR THA ROU NIC GBR  FRA USA    MDA UZB 

NOR URY RUS OMN GEO  ISR     MEX  

NZL  SRB PAN GRC  JPN     POL  

SWE   PRY    HRV    KOR     PRY  

   TUN    HUN    NOR     SVK  

      UKR    ITA    NZL     UKR  

      UZB    LVA    SWE     ZAF  

      ZAF    NLD       

       POL       

       PRT       

       SVK       

       SVN       

       USA       

 
 

6.3 Extrapolating cluster groupings to countries without observed data 

 

The K -means clustering approach provides country groupings based on multiple 

factors, including the HDI, mean age at death, overall excess mortality rates and 

proportion of total deaths. Not all countries are included in the clustering process as 

this was done for a subset to ensure that all countries with data are clustered into 

optimal bins. 

 

However, we require all countries to be assigned to clusters and this is accomplished 

by mapping each country to the 5 K -mean clusters using the multivariate Minkowski 

distance (Singh et al., 2013) between the X matrix values and the cluster averages 

shown in the Tables 5 and 6 : 
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Table 5: K-means cluster average normalised values for year 2020 

 
Cluster HDI Mean age at death Crude excess rate Excess proportion 

1 1.4727 1.1525 -0.7759 -0.1116 

2 0.5609 0.3652 -0.9604 -0.1124 

3 0.5371 0.6141 1.1889 -0.0983 

4 0.0438 0.1689 0.0111 -0.1083 

5 1.1461 1.1343 0.2317 -0.1073 

 

Table 6: K-means cluster average normalised values for year 2021 

 
Cluster HDI Mean age at death Crude excess rate Excess proportion 

1 1.4251 1.2418 -0.5803 -0.1109 

2 1.1869 1.1680 0.3972 -0.1068 

3 0.6426 0.8916 3.4557 -0.0847 

4 0.3908 0.4680 1.6320 -0.0979 

5 0.3160 0.3397 0.1116 -0.1019 

 
 

6.4 Extrapolating age-sex impact to countries without observed data 

 

In order to assess excess mortality due  to COVID-19 in 2020 and 2021, both for 

countries with observed data and those without, it is necessary to determine the 

expected number of deaths by age and sex. These expected number of deaths by 

age and sex are derived using the reported deaths prior to 2020 (where available, 

otherwise GHE2019 if no data is available) forecasted to 2020/2021 using the age-

period Lee-Carter model (AP-LC). 

 

Consider a mortality experience observed at individual ages 𝑥 and calendar years 𝑡, 

giving rise to a total of (𝑘 ×  𝑛) observations, so that we can estimate the central 

mortality rate (𝑚𝑥𝑡) and the corresponding force of mortality( 𝜇𝑥𝑡) by  

(𝜇̂𝑥𝑡 =)𝑚̂𝑥𝑡 =
𝑦𝑥𝑡

𝑒𝑥𝑡
, 

where 𝑦𝑥𝑡 and 𝑒𝑥𝑡 represent the number of deaths and the matching central 

exposure for any given subgroup, respectively. In addition, for each combination of 

age 𝑥 and period 𝑡, we define the cohort year 𝑧 =  𝑡 −  𝑥 representing the year of 

birth of each subgroup in the data.  

 

The AP LC model is expressed as 

log(𝑚𝑥𝑡) = 𝛼𝑥 + 𝛽𝑥𝜅𝑡 + 𝜀𝑥𝑡, 

where the parameters are interpreted as follows: 

• 𝛼𝑥 represents a constant age-specific pattern of mortality; 
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• 𝜅𝑡measures the trend in mortality over time; 

• 𝛽𝑥 measures the age-specific deviations of mortality change from the overall 

trend; 

• 𝜀𝑥𝑡reflects age and time effects not captured in the model and are Gaussian 

distributed 𝑁(0, 𝜎2). 

 

The expected number of deaths by age and sex are adjusted to align with the 

expected death numbers obtained from the overall longitudinal mortality model. 

This approach ensures that the expected number of deaths are consistent and 

reduces any potential bias that may arise from relying solely on age and sex 

forecasts for the two-year period.  

 

For the countries with observed data listed in the table above ( excluding those with 

low death counts or zero inflated counts) and for each age and sex-group, we look 

at the scale 𝑟𝑠,𝑥 representing the age- and sex-specific percentage change in all-

causes mortality when comparing the observed to the expected i.e. the P-Score: 

𝑟𝑠,𝑥 = 100 × (
𝑌𝑠,𝑥 − 𝐸𝑠,𝑥
𝐸𝑠,𝑥

) 

,where 𝑌𝑠,𝑥 and 𝐸𝑠,𝑥 refer to the observed and expected deaths, respectively. This 

quantity contrasts the observed against the expected to capture the age- and sex-

specific changes for 2020/2021. The K -means clusters serve two purposes in 

extrapolating data for countries without observed data. Firstly, they are used to 

summarise these log mortality scalars into cluster specific distributions. Secondly, 

they are used to derive country-specific estimates of predicted deaths by age and 

sex, taking into account the clusters in which the country is classified. 

 

For each cluster 𝑘 (and by extension, each country 𝑗 in the cluster 𝑘), we generate 

sex-specific distribution for the 𝑟𝑠,𝑥scalars based on the observed data. The 

empirical bootstrap distribution is generated by first smoothing the observed series 

by age for each country in the cluster and then repeatedly sampling from the 

smooth series. The range of possible values by age is assumed to be a Gaussian 

approximate with distribution 

𝑟̂𝑠,𝑥
𝑘 ~𝑁(𝑟̅𝑠,𝑥

𝑘 , 𝜎𝑠,𝑥
𝑘 ) 

,where 𝑟̅𝑠,𝑥
𝑘 and 𝜎𝑠,𝑥

𝑘  are the sex 𝑠 and age 𝑥 specific mean and standard deviations for 

cluster 𝑘 derived using the smoothed draws of the observed data.  

Following recommendations from the United Nations Interagency Group for Child 

Mortality Estimation (UNIGME), we do not extrapolate any protection or otherwise 

to children and young adults under age 25. Figures 6 to 10 are of the observed and 

smoothed series and are filtered by cluster. 
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Figure 6: Smoothed ratio by age and sex for clusters 1 to 2 in 2020 
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Figure 7: Smoothed ratio by age and sex for clusters 3 to 4 in 2020 
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Figure 8: Smoothed ratio by age and sex for cluster 5 2020 and cluster 1 in 
2021 
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Figure 9: Smoothed ratio by age and sex for clusters 2 to 3 in 2021 
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Figure 10: Smoothed ratio by age and sex for clusters 4 to 5 in 2021 
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Finally, the draws of the scalars are combined with samples of the age 𝑥 and sex 𝑠 

specific expected deaths by country to generate predicted deaths by age and sex: 

𝐷̂𝑠,𝑥 = 𝐸̂𝑠,𝑥(1 +
𝑟̂𝑠,𝑥

100
) 

Each 𝐷ˆ̂ vector is rescaled to correspond to a random realization from the Poisson count 

model 𝑌ˆ̂ i.e. 

𝐷̃𝑠,𝑥 =
𝐷̂𝑠,𝑥

∑ ∑ 𝐷̂𝑠,𝑥𝑥𝑠

× 𝑌̂ 

This process is repeated 1,000 times for each country, drawing unique samples of 𝑟̂𝑠,𝑥, 

𝐸̂~𝑁(𝐸̅, 𝜎𝐸) and 𝑌̂~𝑁(𝑌̅, 𝜎𝑌) each time. These are used to generate country-specific 

distributions (and uncertainty intervals) of deaths by age and sex. The uncertainty shown 

is the propagation of the uncertainty from the K -means cluster smoothed draws and the 

Poisson count model draws but should not be interpreted as being parametric or 

containing a hypothetical ”true” value. Instead, it depicts a range of plausible values 

depending on the total predicted deaths’ distribution, the expected deaths and the cluster 

assigned to the country. 

 

 

7 Removal of deaths from other shocks 
 
When calculating excess deaths, it is important to distinguish between deaths that 

are directly related to COVID-19 (directly or indirectly) and deaths that may be 

caused by other shocks, such as deaths from conflicts and natural disasters. 

Therefore, it is common practice to remove deaths from other shocks from the total 

number of excess deaths to obtain a more accurate estimate of the impact of COVID-

19 on mortality.  

 

The United Nations Population Division consolidated global datasets that described 

the number of deaths due to (1) conflicts, including wars, mass killings (including 

genocides), battle deaths, etc. and (2) natural disasters, such as floods, cyclones, 

epidemics, earthquakes, famines, droughts and tsunamis. From the consolidated 

data, estimates of the number of deaths from each crisis event by country and year 

were computed, with associated uncertainty bounds. Various analytical methods 

were applied to reconcile overlaps across different data sources, gaps and 

discontinuities due to changes in definitions or territorial boundaries of countries, 

non-annual reference periods, and sources that provided a broad range of crisis-

related deaths rather than a point estimate, among other challenges. More details on 

the methodology can be found at WPP2022_Methodology.pdf. The data used are 

available at: WPP2022_F02_METADATA.XLSX. 

 

https://population.un.org/wpp/Publications/Files/WPP2022_Methodology.pdf
https://population.un.org/wpp/Download/Files/4_Metadata/WPP2022_F02_METADATA.XLSX
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8 Links to statistical code, input and output data 

 
R-syntax and data for generating estimates and replicating parts of the analyses can be 

found at https://github.com/WHOexcessc19/Codebase2022Update. 

 

9 Results 
 

The results obtained through the utilization of this method can be accessed at:  

https://www.who.int/data/sets/global-excess-deaths-associated-with-covid-19-

modelled-estimates 

The results published in May 2022 have been discussed in the following paper : 

Msemburi, W., Karlinsky, A., Knutson, V. et al (2023). The WHO estimates of excess            

mortality associated with the COVID-19 pandemic. Nature 613, 130–137. 
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