Insecticide resistance monitoring and management in India

Dr Rajpal S. Yadav

Veterinary Public Health, Vector Control & Environment Unit Department of Control of Neglected Tropical Diseases WHO, Geneva, Switzerland YadavRaj@who.int

Major issues of concern

- Portfolio of public health insecticides is limited
- High reproduction rate and short life-cycle of mosquitoes spread R-genes fast
- Increase of selection pressure reducing effectiveness
 - Collateral effects of use of pesticides in agriculture
 - Sub-standard insecticide applications
 - Use of poor quality/counterfeit (illegal) insecticides
 - Non-judicious use of insecticides

Scale of the resistance problem in India

- Notable control failures during the malaria eradication era – DDT, dieldrin, malathion
- Non-reversible DDT R in An. culicifacies
- PY resistance widespread; R-frequency is <10%
- IR data are limited
 - Major focus is on malaria vectors
 - Multiple malaria vectors in different settings
 - Much less attention on Aedes, Phlebotomus, Culex spp.
 - In future, high intensity resistance & stronger mechanisms may pose threat to malaria control

Major aims of insecticide resistance management strategies

- Preventing loss of the epidemiological impact in field (effectiveness vs. control failure)
 - Prolonging effectiveness of insecticides and acaricides
 - Countering the development of resistance
- Developing alternative tools, strategies and policies
- Building national capacity for IRM
- Creating evidence base for alternative policies
- Mobilize resources

Main insecticide resistance mechanisms

- Modifying the target-site (e.g. due to kdr gene mutation affecting acetylcholinesterase or voltage-gated sodium channels)
- Metabolic resistance by detoxifying insecticides (using e.g. esterases, oxidases, monoxygenases and glutathione S-transferases)
- Behavioural resistance (deterrence/exophily)
- Cuticular resistance due to reduced insecticide penetration

Core malaria vector control interventions

- LLINs/ITNs
- IRS
- Larviciding: supplementary intervention in areas where breeding habitats are few, fixed and findable and vector ecology is well understood

Effectiveness of LLINs in the face of resistance

- ITNs provide personal and community protection when used by most people in an area.
- WHO Study*: pyrethroid LLINs continue to play a significant role in malaria control in the face of emerging insecticide resistance.
 - scale up use of LLINs for **community protection** without changing current policy
 - pyrethroid-LLINs continue to provide **personal protection** against malaria
 - this protection was no different between areas of varying levels of pyrethroid resistance
 - higher levels of resistance caused some loss of community protection of LLIN use, although there was no evidence of an associated increase in malaria incidence.

Synergist PBO in nets

- can increase the efficacy of pyrethroids in LLINs in all **but** highly resistant mosquito populations
- this impact may vary in different regions, based on resistance intensity and mechanisms

Conclusions

- available evidence from field does not yet justify a complete switch from pyrethroid-only LLINs to PBO-LLINs in all settings;
- the evidence is sufficient to justify limited, pilot "exploratory" implementation of PBO-LLINs, if accompanied by robust evaluation of the impact (entomological + epidemiological).

IRS approaches for resistance management

Cost of a rotational vector control programme

Resistance management using rotations is expected to be cost-saving in the long run

LLINs + IRS in the face of resistance – outcomes of a WHO study

- Area with pyrethroid resistance & bendiocarb susceptibility
 - Pyrethroid LLINs + IRS with deltamethrin = no additional protection
 - Pyrethroid LLINs + IRS with **bendiocarb** reduced malaria incidence by 50% relative to LLINs alone
 - Pyrethroid + carbamate IRS appeared to slow the emergence of pyrethroid resistance relative to LLINs only

Conclusion

Adding IRS with an unrelated mode of actioncompound enhances the effectiveness of VC against malaria

WHO guidance documents

https://apps.who.int/iris/bitstrea m/handle/10665/44846/978924 1564472 eng.pdf

https://apps.who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf

WHO Insecticide Susceptibility Test – a direct response-to-exposure test

- Test steps:
 - 1. Detect the presence of insecticide resistance phenotypes using a DC
 - 2. Assess the strength of phenotypic resistance by intensity bioassays at 5X and 10X of DC
 - 3. Determine the involvement of metabolic resistance by exposure to 4% PBO papers
- Test species: wild-caught versus 3–5d old F1 progeny females
- Test conditions: 25 °C ± 2 °C and 80% ± 10% relative humidity (no test > 30 °C)
- Sample size: 120–150 female mosquitoes (insecticide = 25x4; control: 25x2)
- Use of a paper: no more than 6 times
- Store papers at 4–8 °C; acclimatize at room temperature before opening the packet and use.

Test procedure and scheme

- Mosquitoes are exposed to an insecticide discriminating concentration (DC) on filter papers
- Exposure: a fixed time period of 1h

Recording test results

- Recording mortality:
 - Knock down at 60 min
 - at 24h, i.e. 1 hr exposure + 24h holding/recovery period
 - or longer up to 72h for slow-acting compounds

WHO mortality criteria

- Criteria for measuring phenotypic resistance (WHO, 2012)
 - Susceptible (S) = 98–100% mortality;
 - Suspected resistance (SR) = 90–97% mortality;
 - Resistant (R) = < 90% mortality.

Pre-emptive actions against malaria vector resistance

Geographical areas with:	IRM pre-emptive actions
1. Unknown resistance levels	Conduct susceptibility tests; monitor & map IR and
	resistance mechanisms.
2. IRS alone	Rotate use of insecticides with unrelated modes of
(as the main vector control	actions; use mixtures/rotations with new chemistries;
intervention)	- current options are: pyrethroids - malathion -
	pirimiphos-methyl – clothianidin
3. LLINs alone as the main VC	Use combination or PBO ITNs:
intervention	- near future options are: pyr.+PBO ITN;
	pyr+chlorfenapyr ITN; pyr+pyriproxyfen ITN.
4. Combination of IRS+LLINs	Stop IRS with pyrethroids, no change in LLIN strategy
5. Selection for alternative	Consider: cross-resistance, efficacy of new insecticide
insecticides	and costs

Strategies to delay resistance

- Action must be pre-emptive, right from the outset
- Don't wait for building high resistance levels, or proof of control failure
 - because methods for delaying resistance become less effective as resistance intensity increases
- IVM approach
 - judicious use & informed decision-making
 - sound pesticide management to reduce selection pressure
 - situation-specific use of alternative VC methods

Key country actions and way a foreward

- 1. Development of country IRM plan
 - Situation analysis
 - Entomological surveillance
 - Resistance monitoring and data management
- 2. Coordination with research institutions
 - Fill knowledge gaps on R-mechanisms
 - Assess impact of current management approaches
 - Develop/test innovative VC tools/novel approaches
- 3. Develop capacity: NVBDCP, sentinel institutions/Universities
- 4. Advocacy for adequate resources
- 5. Coordination, networking, data/information exchange
- 6. Supply of test kits

WHO test kits for IR testing

Countries ~

Newsroom ∨

Emergencies >

D

Neglected tropical diseases

Neglected tropical diseases

About us

Diseases

Preventive chemotherapy and transmission control

Innovative and intensified disease management

Vector ecology and management

Insecticide resistance

Order test kits and supplies

- Catalogue for test kits
- Order form (updated 23 September 2019)

Discriminating concentrations

- Discriminating concentrations of insecticides for adult mosquitoes

Test guidelines

Resistance monitoring should be an integral part of vector/public health pest control programmes. Knowledge of vector/pest susceptibility to pesticides, changing trends of resistance and their operational implications are basic

https://www.who.int/neglected_diseases/vector_ecology/resistance/en/

WHO data collation and management

Thank you